Conceptualization and evaluation of the exploration and utilization of low/medium-temperature geothermal energy: a case study of the Guangdong-Hong Kong-Macao Greater Bay Area

  • Heping XieEmail author
  • Cunbao Li
  • Tao Zhou
  • Jialiang Chen
  • Jiaxi Liao
  • Juchang Ma
  • Bixiong Li
Original Article
Part of the following topical collections:
  1. Sustainable development and utilization of geothermal systems


Geothermal energy is one of the most promising renewable energies due to its high load factor. This work is devoted to presenting the conceptualizations and research advances made at Shenzhen University on the exploration and utilization of low/medium-temperature geothermal energy based on the geothermal resource potential and characteristics of the Guangdong-Hong Kong-Macao Greater Bay Area. The results indicate that the geological structure and lithology of this area are conducive to the formation of geothermal conditions. The geothermal flow and geothermal gradient in this area are higher than the average values in southern China. The total hydrothermal resources and hot dry rock geothermal resources amount to 1.8 × 1017 kJ and 4.0 × 1017 kJ, respectively. To enhance the permeability of geothermal reservoirs, especially hot dry rock reservoirs, the volumetric fracturing technique, which is based on three-dimensional fracture mechanics, and the fatigue pneumatic fracturing technique are proposed to stimulate geothermal reservoirs. The advances in theoretical and experimental research and some noteworthy future research topics on volumetric fracturing and fatigue pneumatic fracturing techniques are summarized. To increase the efficiency of low/medium-temperature geothermal power generation, conceptualizations of magnetic levitation power generation technology and thermovoltaic power generation technology for geothermal power generation are proposed. This study may provide new insights into geothermal exploration and low/medium-temperature geothermal power generation.


Low/medium-temperature geothermal energy Three-dimensional fracture mechanics Volumetric fracturing Photoelastic technique Fatigue pneumatic fracturing Magnetic levitation power generation Thermovoltaic power generation Thermoelectric material 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 51804203, No. 51827901) and the Chinese Academy of Engineering (No. 2019-ZCQ-04)

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. Ahiska R, Mamur H (2013) Design and implementation of a new portable thermoelectric generator for low geothermal temperatures. IET Renew Power Gener 7:700–706CrossRefGoogle Scholar
  2. Ayatollahi MR, Saboori B (2015) Maximum tangential strain energy density criterion for general mixed mode I/II/III brittle fracture. Int J Dam Mech 24(2):263–278CrossRefGoogle Scholar
  3. Bignardi C, Bertetto AM, Mazza L (1999) Photoelastic measurements and computation of the stress field and contact pressure in a pneumatic lip seal. Tribol Int 32:1–13. CrossRefGoogle Scholar
  4. Census and statistics department tHKSAR (2019) Hong Kong energy statistics 2018 https://www.censtatdgovhk/hkstat/sub/sp90jsp?productCode=B1100002
  5. Chang J, Xu JQ, Mutoh Y (2006) A general mixed-mode brittle fracture criterion for cracked materials. Eng Fracture Mech 73(9):1249–1263CrossRefGoogle Scholar
  6. Chen MX, Wang JY (1994) China’s geothermal resources-the formation characteristics and potential assessment. Science Press, BeijingGoogle Scholar
  7. Ellsworth WL (2013) Injection-induced earthquakes. Science 341:1225942CrossRefGoogle Scholar
  8. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525CrossRefGoogle Scholar
  9. Ganguly S, Kumar MSM (2012) Geothermal reservoirs: a brief review. J Geol Soc India 79:589–602. CrossRefGoogle Scholar
  10. Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848CrossRefGoogle Scholar
  11. Glassley WE (2014) Geothermal energy: renewable energy and the environment. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. Grigoli F, Cesca S, Rinaldi AP, Manconi A, Lopez-Comino JA, Clinton JF, Westaway R, Cauzzi C, Dahm T, Wiemer S. (2018) The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 360:1003–1006CrossRefGoogle Scholar
  13. Guzović Z, Sakoman I, Lončar D (2014) Influence of working fluid on ORC with low temperature geothermal source–Case study geothermal power plant “Babina Greda”. In: Proceedings of 10th international conference on heat transfer, fluid mechanics and thermodynamics, Florida, 14–16, July 2014, pp 781–791Google Scholar
  14. Hawkins LA, Zhu L, Blumber EJ (2011) Development of a 125 kW AMB expander/generator for waste heat recovery. J Eng Gas Turb Power 133:072503CrossRefGoogle Scholar
  15. Hawkins L, Lei Z, Blumber E, Mirmobin P, Erdlac R (2012) Heatto-electricity with high-speed magnetic bearing/generator system. In: Geothermal resources council annual meeting, Reno, NV, Sept, 2012, pp 1073–1078Google Scholar
  16. Hou P, Gao F, Gao Y, Yang Y, Cheng H (2017) Effect of pulse gas pressure fatigue on mechanical properties and permeability of raw coal. J China Univ Min Technol 2:257–264Google Scholar
  17. Hu L, Zhang Y, Wu H, Liu Y, Li J, He J, Ao W, Liu F, Pennycook S, Zeng X (2018) Synergistic compositional–mechanical–thermal effects leading to a record high zT in n-type V2VI3 alloys through progressive hot deformation. Adv Funct Mater 28:1803617CrossRefGoogle Scholar
  18. Hussain M, Pu S (1974) Underwood J Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis: proceedings of the 1973 national symposium on fracture mechanics, part II. ASTM InternationalGoogle Scholar
  19. Ju Y, Xie H, Zheng Z, Lu J, Mao L, Gao F, Peng R (2014) Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull 59:5354–5365CrossRefGoogle Scholar
  20. Ju Y, Ren Z, Li X, Wang Y, Mao L, Chiang FP (2019) Quantification of hidden whole-field stress inside porous geomaterials via three-dimensional printing and photoelastic testing methods. J Geophys Res Solid Earth 124:5408CrossRefGoogle Scholar
  21. Karthick Babu PRD, Ramesh K (2006) Development of photoelastic fringe plotting scheme from 3D FE results. Commun Numer Methods Eng 22:809–821. CrossRefzbMATHGoogle Scholar
  22. Kim K-H, Ree J-H, Kim Y, Kim S, Kang SY, Seo W (2018) Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 360:1007–1009CrossRefGoogle Scholar
  23. Lazarus V, Leblond J-B (1998) Propagation de fissures en mode mixte (I + III) ou (I + II + III). Compte Rendu Acad Sci Ser IIB Mech Phys Chem Astron 326:171–177zbMATHGoogle Scholar
  24. Lazarus V, Leblond J, Mouchrif S (2001) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part II: comparison with experiments. J Mech Phys Solids 49:1421–1443zbMATHCrossRefGoogle Scholar
  25. Lei Z, Yun H, Kang Y (2009) Automatic evaluation of photoelastic fringe constant by the nonlinear least-squares method. Opt Laser Technol 41:985–989. CrossRefGoogle Scholar
  26. Li J, Li S, Li X, Liu F, Ao W (2012) Improvement of thermoelectric properties for PbTe-based materials based on the relative phase diagrams. In: 16th National symposium on phase mapping and international symposium on phase mapping and material design, pp 148–152Google Scholar
  27. Lin B, Mear ME, Ravi-Chandar K (2010) Criterion for initiation of cracks under mixed-mode I + III loading. Int J Fract 165:175–188zbMATHCrossRefGoogle Scholar
  28. Liu P, Ju Y, Ranjith PG, Zheng Z, Wang L, Wanniarachchi A (2016) Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models. Int J Coal Sci Technol 3:284–294CrossRefGoogle Scholar
  29. Lu SM (2018) A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81:2902–2921. CrossRefGoogle Scholar
  30. Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93. CrossRefGoogle Scholar
  31. Ma W, Gong Y, Zhao D, Xu Q, Qin H, Chen Y (2016) Geothermal energy exploitation utilization, and its development trend in China. Bull Chin Acad Sci 31:199–207Google Scholar
  32. Maxwell SC, Chorney D, Goodfellow SD (2015) Microseismic geomechanics of hydraulic-fracture networks: insights into mechanisms of microseismic sources. Lead Edge 34:904–910CrossRefGoogle Scholar
  33. Moya D, Aldas C, Kaparaju P (2018) Geothermal energy: power plant technology and direct heat applications. Renew Sustain Energy Rev 94:889–901. CrossRefGoogle Scholar
  34. Muffler P, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89CrossRefGoogle Scholar
  35. Pan S, Gao M, Shah K, Zheng J, Pei S, Chiang P (2018) Establishment of enhanced geothermal energy utilization plans: barriers and strategies. Renew Energy 132:19CrossRefGoogle Scholar
  36. Pathak PM, Ramesh K (1999) Validation of finite element modelling through photoelastic fringe contours. Commun Numer Methods Eng 15:229–238.;2-l CrossRefzbMATHGoogle Scholar
  37. Pinit P, Umezaki E (2007) Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique. Opt Lasers Eng 45:795–807. CrossRefGoogle Scholar
  38. Pook LP, Berto F, Campagnolo A, Lazzarin P (2014) Coupled fracture mode of a cracked disc under anti-plane loading. Eng Fract Mech 128:22–36CrossRefGoogle Scholar
  39. Richard H, Schramm B, Schirmeisen N-H (2014) Cracks on mixed mode loading–theories, experiments, simulations. Int J Fatigue 62:93–103CrossRefGoogle Scholar
  40. Richter A (2019) Global geothermal capacity reaches 14,900 MW: new Top 10 ranking of geothermal countries. http://www.thinkgeoenergycom
  41. Rispler AR, Steven GP, Tong LY (2000) Photoelastic evaluation of metallic inserts of optimised shape. Compos Sci Technol 60:95–106. CrossRefGoogle Scholar
  42. Rubinstein JL, Mahani AB (2015) Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol Res Lett 86:1060–1067CrossRefGoogle Scholar
  43. Rubio-Maya C, Ambriz Diaz VM, Pastor Martinez E, Belman-Flores JM (2015) Cascade utilization of low and medium enthalpy geothermal resources A: review. Renew Sustain Energy Rev 52:689–716. CrossRefGoogle Scholar
  44. Schöllmann M, Richard H, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117:129–141. CrossRefGoogle Scholar
  45. Self SJ, Reddy BV, Rosen MA (2013) Geothermal heat pump systems: status review and comparison with other heating options. Appl Energy 101:341–348CrossRefGoogle Scholar
  46. Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Ann Rev Mater Res 41:399CrossRefGoogle Scholar
  47. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10:305–321CrossRefGoogle Scholar
  48. Smith CW (1980) Photoelasticity in fracture-mechanics. Exp Mech 20:390–396. CrossRefGoogle Scholar
  49. Statistics Bureau of Guangdong Province  (2019) Statistical yearbook of Guangdong Province. http://www.gdstatsgovcn/tjsj/gdtjnj/
  50. Statistics and Census Service GoMSAR (2019) Macao energy statistics 2019. http://www.dsecgovmoGoogle Scholar
  51. Suter C, Jovanovic Z, Steinfeld A (2012) A 1 kWe thermoelectric stack for geothermal power generation–modeling and geometrical optimization. Appl Energy 99:379–385CrossRefGoogle Scholar
  52. The British Petroleum Company plc (2019a) BP energy outlook 2019. http://www.bpcom/energyoutlook
  53. The British Petroleum Company plc  (2019b) BP statistical review of world energy 2019. http://www.bpcom/statisticalreview
  54. Theocaris P, Andrianopoulos N (1982) The T-criterion applied to ductile fracture. Int J Fract 20:R125–R130CrossRefGoogle Scholar
  55. Tomac I, Sauter M (2018) A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev 82:3972–3980. CrossRefGoogle Scholar
  56. Wang J, Ren L, Xie L, Xie H, Ai T (2016) Maximum mean principal stress criterion for three-dimensional brittle fracture. Int J Solids Struct 102:142–154Google Scholar
  57. Wang K, Yuan B, Ji G, Wu X (2018) A comprehensive review of geothermal energy extraction and utilization in oilfields. J Petrol Sci Eng 168:465–477. CrossRefGoogle Scholar
  58. Witter JB, Trainor-Guitton WJ, Siler DL (2019) Uncertainty and risk evaluation during the exploration stage of geothermal development: a review. Geothermics 78:233–242CrossRefGoogle Scholar
  59. Wu R (2009) Energy efficiency technologies–air source heat pump vs. ground source heat pump. J Sustain Dev 2:14–23Google Scholar
  60. Xie H, Gao F, Ju Y, Xie L, Yang Y, Wang J (2015) Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs. Chin Sci Bull 61:36–46Google Scholar
  61. Xie H, Ang R, Li B, Deng J, Mo S, Chen Z, Tang M, Yin J (2018) Principle and technological conception of middle-low temperature geothermal power generation based on large-scale single crystals of thermovoltaic materials. Adv Eng Sci 50:1–12. CrossRefGoogle Scholar
  62. Xie H, Yang Z, Deng J (2019a) Assessment of geothermal resource potential in the Guangdong-Hong Kong-Macao Greater Bay Area. Adv Eng Sci 51:1–8Google Scholar
  63. Xie HP, Ma JC, Zhou T, Liao JX, Li CB (2019) Low/medium-temperature geothermal organic rankine cycle magnetic-levitation cascade power generation system. China Patent, CN201910472762.4Google Scholar
  64. Xu T, Hu Z, Li S, Jiang Z, Hou Z, Li F, Liang X, Feng B (2018) Enhanced geothermal system: international progresses and research status of China. Acta Geol Sin 92:1936–1947Google Scholar
  65. Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Tech 48(15):8334–8348CrossRefGoogle Scholar
  66. Yamamoto T, Furuhata T, Arai N, Mori K (2001) Design and testing of the organic Rankine cycle. Energy 26:239–251CrossRefGoogle Scholar
  67. Yang Y, Huo Y, Xia W, Wang X, Zhao P, Dai Y (2017) Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China. Energy 140:633–645CrossRefGoogle Scholar
  68. Yoon CE, Huang Y, Ellsworth WL, Beroza GC (2017) Seismicity during the initial stages of the Guy-Greenbrier, Arkansas, earthquake sequence. J Geophys Res Solid Earth 122:9253–9274CrossRefGoogle Scholar
  69. Zang A, Yoon JS, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195:1282–1287. CrossRefGoogle Scholar
  70. Zang A, Stephansson O, Stenberg L, Plenkers K, Specht S, Milkereit C, Schill E, Kwiatek G, Dresen G, Zimmermann G, Dahm T (2016) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Int 208:790–813CrossRefGoogle Scholar
  71. Zang A, Stephansson O, Zimmermann G (2017) Keynote: fatigue hydraulic fracturing. In: ISRM European rock mechanics symposium-EUROCK 2017, international society for rock mechanics and rock engineeringGoogle Scholar
  72. Zang A, Zimmermann G, Hofmann H, Stephansson O, Min K-B, Kim KY (2019) How to reduce fluid-injection-induced seismicity. Rock Mech Rock Eng 52:475–493CrossRefGoogle Scholar
  73. Zhang X, Hu Q (2018) Development of geothermal resources in China: a review. J Earth Sci 29:452–467. CrossRefGoogle Scholar
  74. Zhang S, Wang H, Guo T (2011) Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl Energy 88:2740–2754CrossRefGoogle Scholar
  75. Zhao T, Zhao Y, Wang Y, Fan J (1985) Experimental study on mixed mode fracture criterion. J Cent China Univ Sci Technol 13:47–50Google Scholar
  76. Zhou T, Zhu J, Ju Y, Xie H (2019) Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression. Eng Fract Mech 205:190–204CrossRefGoogle Scholar
  77. Zhuang S, Wu D (2019) Urban geology and territorial space governance of the new era. BeijingGoogle Scholar
  78. Zimmermann G, Hofmann H, Babadagli T, Yoon JS, Zang A, Deon F, Urpi L, Blöcher G, Hassanzadegan A, Huenges E (2015) Multi-fracturing and cyclic hydraulic stimulation scenarios to develop enhanced geothermal systems-Feasibility and mitigation strategies to reduce seismic risk. In: Proceedings world geothermal congress, Melbourne, Australia, pp 19–25Google Scholar
  79. Zimmermann G, Zang A, Stephansson O, Klee G, Semiková H (2019) Permeability enhancement and fracture development of hydraulic in situ experiments in the Äspö Hard Rock Laboratory. Swed Rock Mech Rock Eng 52:495–515. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Heping Xie
    • 1
    • 2
    Email author
  • Cunbao Li
    • 1
    • 2
  • Tao Zhou
    • 1
    • 2
  • Jialiang Chen
    • 1
    • 2
  • Jiaxi Liao
    • 1
  • Juchang Ma
    • 3
  • Bixiong Li
    • 4
  1. 1.Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green EnergyShenzhen UniversityShenzhenChina
  2. 2.Institute of Clear EnergyShenzhenChina
  3. 3.Productive Technology Service Centre of Henan Agriculture DepartmentZhengzhouChina
  4. 4.College of Architecture and EnvironmentSichuan UniversityChengduChina

Personalised recommendations