Glass Structures & Engineering

, Volume 4, Issue 3, pp 433–448 | Cite as

Stress whitening effects in transparent structural silicone adhesives

  • M. DrassEmail author
  • J. Muth
  • C. Louter
  • J. Schneider
S.I.: Glass Performance Paper


Stress whitening is a common effect in polymers where an increase in brightness or an increased opacity of the material can be observed under mechanical loading. Investigating the stress whitening effect for the transparent structural silicone adhesive (TSSA), this effect occurs in different forms depending on the applied deformation. The intensity and appearance of whitening in TSSA depends decisively on the type of loading, i.e. under isochoric deformation a spot-wise whitening can be observed, whereas under volumetric loading a very dense, cloud-like whitening becomes visible. In order to clarify why the stress whitening effect occurs at all, experimental investigations are carried out on uniaxial cyclic tensile tests and constrained tensile tests. The special feature of the uniaxial cyclic tensile tests is that they are performed in a miniature tensile testing machine, which is positioned under a light microscope. This makes it possible to observe stress whitening during cyclic deformation at a micro-scale. Furthermore, for the observation of whitening during constrained tensile tests, so-called pancake test are investigated and compared with the results of the uniaxial cyclic tensile tests. Since the whitening effect in the pancake test is in clear contrast to the uniaxial tensile tests, differences of both results are presented. Finally, the causes of both forms of whitening are defined and characterized.


Transparent structural silicone adhesive Stress whitening Mullins effect Cavitation Finite porosity 



We would like to gratefully thank The Dow Chemical Company (“DOW”) for their support during our studies.


  1. Ansarifar, A., Lim, B.Y.: Reinforcement of silicone rubber with precipitated amorphous white silica nanofiller-effect of silica aggregates on the rubber properties. J. Rubber Res. 9(3), 140–158 (2006)Google Scholar
  2. Bakshi, S., Kulshreshtha, A., Singh, B., Anand, J.: Stress-whitening of polypropylene block copolymer in impact tests and its measurement. Polym. Test., pp. 191–199. (1988). CrossRefGoogle Scholar
  3. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 306(1496), 557–611 (1982). MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bascom, W.D., Hunston, D.L.: Fracture of Elastomer-Modified Epoxy Polymers, Chap. 6, pp. 135–172. American Chemical Society, Washington (1989). CrossRefGoogle Scholar
  5. Becker, F.: Entwicklung einer beschreibungsmethodik für das mechanische verhalten unverstärkter thermoplaste bei hohen deformationsgeschwindigkeiten. Doctoral thesis, Martin-Luther-Universität Halle-Wittenberg (2009)Google Scholar
  6. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, London (2013)zbMATHGoogle Scholar
  7. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Method. Cambridge University Press, Cambridge (2008) zbMATHGoogle Scholar
  8. Busse, W.F.: Physics of rubber as related to the automobile. J. Appl. Phys. 9(7), 438–451 (1938). CrossRefGoogle Scholar
  9. Chenal, J.M., Gauthier, C., Chazeau, L., Guy, L., Bomal, Y.: Parameters governing strain induced crystallization in filled natural rubber. Polymer 48(23), 6893–6901 (2007). CrossRefGoogle Scholar
  10. Cristiano, A., Marcellan, A., Long, R., Hui, C.Y., Stolk, J., Creton, C.: An experimental investigation of fracture by cavitation of model elastomeric networks. J. Polym. Sci. Part B Polym. Phys. 48(13), 1409–1422 (2010). CrossRefGoogle Scholar
  11. Diani, J., Fayolle, B., Gilormini, P.: A review on the mullins effect. Eur. Polym. J. 45(3), 601–612 (2009). CrossRefGoogle Scholar
  12. DIN EN ISO 527-1: Plastics—Determination of Tensile Properties—Part 1: General Principles (2012)Google Scholar
  13. Drass, M., Schneider, J., Kolling, S.: Damage effects of adhesives in modern glass façades: a micro-mechanically motivated volumetric damage model for poro-hyperelastic materials. Int. J. Mech. Mater. Des. (2017). CrossRefGoogle Scholar
  14. Drass, M., Kolupaev, V.A., Schneider, J., Kolling, S.: On cavitation in transparent structural silicone adhesive: TSSA. Glass Struct. Eng. 3(2), 237–256 (2018a). CrossRefGoogle Scholar
  15. Drass, M., Schneider, J., Kolling, S.: Novel volumetric helmholtz free energy function accounting for isotropic cavitation at finite strains. Mater. Des. 138, 71–89 (2018b). CrossRefGoogle Scholar
  16. Drass, M., Bartels, N., Schneider, J.: Pseudo-elastic cavitation model—part ii: extension to cyclic behavior of transparent silicone adhesives. Glass Struct. Eng. (2019a) Google Scholar
  17. Drass, M., Du Bois, P., Schneider, J., Kolling, S.: Pseudo-elastic cavitation model—part i: finite element analyses on thin silicone adhesives in façades. Glass Struct. Eng. (2019b)Google Scholar
  18. Fond, C.: Cavitation criterion for rubber materials: a review of void-growth models. J. Polym. Sci. Part B Polym. Phys. 39(17), 2081–2096 (2001). CrossRefGoogle Scholar
  19. Franz, J.: Investigation of the residual load-bearing behavior of fractured glazing. Ph.D. Thesis, Technical University Darmstadt (2015). CrossRefGoogle Scholar
  20. Gent, A.N., Lindley, P.B.: Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 249(1257), 195–205 (1959). CrossRefGoogle Scholar
  21. Gunel, E.M., Basaran, C.: Stress whitening quantification of thermoformed mineral filled acrylics. J. Eng. Mater. Technol. 132(3), 031002 (2010). CrossRefGoogle Scholar
  22. Hamdi, A., Guessasma, S., Abdelaziz, M.N.: Fracture of elastomers by cavitation. Mater. Des. 53, 497–503 (2014). CrossRefGoogle Scholar
  23. Heyden, S., Conti, S., Ortiz, M.: A nonlocal model of fracture by crazing in polymers. Mech. Mater. 90, 131–139 (2015). CrossRefGoogle Scholar
  24. Hippe, J.: Investigations of the material behavior of glued connections with TSSA. Master’s Thesis, Technical University Darmstadt (2015)Google Scholar
  25. Hou, H.S., Abeyaratne, R.: Cavitation in elastic and elastic–plastic solids. J. Mech. Phys. Solids 40(3), 571–592 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  26. Ioannidou-Kati, A., Santarsiero, M., de Vries, P., Teixeira de Freitas, S., Nijsse, R., Louter, C.: Mechanical behavior of transparent structural silicone adhesive (TSSA) steel-to-glass laminated connections under monotonic and cyclic loading. Glass Struct. Eng. (2018). CrossRefGoogle Scholar
  27. Jerjen, I., Revol, V., Brunner, A.J., Schuetz, P., Kottler, C., Kaufmann, R., Luethi, T., Nicoletti, G., Urban, C., Sennhauser, U.: Detection of stress whitening in plastics with the help of X-ray dark field imaging. Polym. Test. 32(6), 1094–1098 (2013). CrossRefGoogle Scholar
  28. Kambour, R.P.: A review of crazing and fracture in thermoplastics. J. Polym. Sci. Macromol. Rev. 7(1), 1–154 (1973). CrossRefGoogle Scholar
  29. Klosowski, J., Wolf, A.T.: Sealants in Construction. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  30. Lindsey, G.H.: Triaxial fracture studies. J. Appl. Phys. 38(12), 4843–4852 (1967). CrossRefGoogle Scholar
  31. Lopez-Pamies, O., Nakamura, T., Idiart, M.I.: Cavitation in elastomeric solids: ii–onset-of-cavitation surfaces for neo-Hookean materials. J. Mech. Phys. Solids 59(8), 1488–1505 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  32. Misra, R.D.K., Hadal, R., Duncan, S.J.: Surface damage behavior during scratch deformation of mineral reinforced polymer composites. Acta Mater. 52(14), 4363–4376 (2004). CrossRefGoogle Scholar
  33. Mullins, L.: Effect of stretching on the properties of rubber. Rubber Chem. Technol. 21(2), 281–300 (1948). CrossRefGoogle Scholar
  34. Ozbas, B., Toki, S., Hsiao, B.S., Chu, B., Register, R.A., Aksay, I.A., Prud’homme, R.K., Adamson, D.H.: Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J. Polym. Sci. Part B Polym. Phys. 50(10), 718–723 (2012). CrossRefGoogle Scholar
  35. Santarsiero, M., Louter, C., Nussbaumer, A.: The mechanical behavior of sentryglas ionomer and tssa silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state. Glass Struct. Eng. 1(2), 395–415 (2016). CrossRefGoogle Scholar
  36. Sitte, S., Brasseur, M., Carbary, L., Wolf, A.: Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (TSSA) for point fixing in glazing. J. ASTM Int. 10(8), 1–27 (2011). CrossRefGoogle Scholar
  37. Thomas, R., Yumei, D., Yuelong, H., Le, Y., Moldenaers, P., Weimin, Y., Czigany, T., Thomas, S.: Miscibility, morphology, thermal, and mechanical properties of a dgeba based epoxy resin toughened with a liquid rubber. Polymer 49(1), 278–294 (2008). CrossRefGoogle Scholar
  38. Valentin, J.L., Mora-Barrantes, I., Carretero-Gonzalez, J., Lopez-Manchado, M.A., Sotta, P., Long, D.R., Saalwaechter, K.: Novel experimental approach to evaluate filler-elastomer interactions. Macromolecules 43(1), 334–346 (2010). CrossRefGoogle Scholar
  39. Xiang, C., Sue, H.J., Chu, J., Masuda, K.: Roles of additives in scratch resistance of high crystallinity polypropylene copolymers. Polym. Eng. Sci. 41(1), 23–31 (2001). CrossRefGoogle Scholar
  40. Yerzley, F.L.: Adhesion of neoprene to metal. Ind. Eng. Chem. 31(8), 950–956 (1939). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für BaukonstruktionTechnische Universität DresdenDresdenGermany

Personalised recommendations