Advertisement

Glass Structures & Engineering

, Volume 3, Issue 2, pp 373–388 | Cite as

Investigations on the thermorheologically complex material behaviour of the laminated safety glass interlayer ethylene-vinyl-acetate

  • Miriam SchusterEmail author
  • Michael Kraus
  • Jens Schneider
  • Geralt Siebert
SI: Challenging Glass paper

Abstract

Laminated safety glass has become an indispensable component in building construction, automotive and solar industry. It consists of at least two glass panes, that are laminated together with a polymeric interlayer. Mechanically speaking, the polymeric interlayer enables a shear transfer between the two glass panes. Here, the difficulty lies in the understanding of the real shear transmission. On the one hand, polymeric interlayers show a time dependent material behaviour, which can be described with a ‘Prony-series’ in the linear viscoelastic area. On the other hand, polymeric interlayers show a temperature dependent material behaviour. Hence, a Prony-series is only valid for one specific temperature. However, since relaxation is based on molecular movements and rearrangement processes, which can be thermally activated, an increase in temperature leads to an acceleration of the relaxation process. The time-temperature correlation can be taken into account by means of a ‘Time-Temperature-Superposition-Principle’ (TTSP). The relaxation curve of a thermorheologically simple material shifts solely horizontal along the time axis due to temperature changes, while its shape remains constant. Mathematically, this means, that all relaxation times of the Prony-series are multiplied by the same shift factor \(a_{{T}}\). Recent research of the authors shows, that some polymeric interlayers don’t follow a simple TTSP. The experimental identification through ‘Dynamical-Mechanical-Thermal-Analysis’ as well as ‘Differential Scanning Caliometry’ and numerical incorporation of this thermorheologically complex material behaviour into state-of-the-art Finite-Element-Software will be investigated on the example of ‘Ethylene-vinyl acetate’ in the following paper.

Keywords

Laminated glass Polymeric interlayer Thermorheological complex Time-temperature-superposition 

Notes

Acknowledgements

At this point we would like to thank the following institutions and persons for their valuable support in this work: Dr. Christoph Mittermeier from the Institute of Mechanics (LRT4) of the Faculty of Aerospace at the University of German Armed Forces Munich for the possibility of carrying out DSC experiments, the Institute of Mechanics and Materials Research at THM Giessen for the possibility of carrying out the double-shear DMTA experiment, the Institute of Construction and Building Materials at TU Darmstadt for the possibility of carrying out the DSC tests, the two students Eve Laberge (International Research Experience Program at the TU Darmstadt) and Lars Christ (University of German Armed Forces Munich) for their valuable research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Barbero, E.J.: Prediction of long-term creep of composites from doubly-shifted polymer creep data. J. Compos. Mater. 43(19), 2109–2124 (2009).  https://doi.org/10.1177/0021998308098239 CrossRefGoogle Scholar
  2. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  3. Buddenberg, S., Hof, P., Oechsner, M.: Climate loads in insulating glass units: comparison of theory and experimental results. Glass Struct. Eng. 1(1), 301–313 (2016).  https://doi.org/10.1007/s40940-016-0028-z CrossRefGoogle Scholar
  4. Castagnet, S.: High-temperature mechanical behavior of semi-crystalline polymers and relationship to a rubber-like ”relaxed” state. Mech. Mater. 41(2), 75–86 (2009).  https://doi.org/10.1016/j.mechmat.2008.10.001 CrossRefGoogle Scholar
  5. DIN 7724: Polymere Werkstoffe – Gruppierung polymerer Werkstoffe aufgrund ihres mechanischen Verhaltens -Deutsche Fassung. In (1993)Google Scholar
  6. DIN 51007: Thermische Analyse (TA); Differenzthermoanalyse (DTA) Grundlagen - Deutsche Fassung. In (1994)Google Scholar
  7. DIN EN ISO 6721-1: Kunststoffe – Bestimmung dynamisch-mechanischer Eigenschaften-Teil 1: Allgemeine Grundlagen - Deutsche Fassung. In (2011)Google Scholar
  8. DIN EN ISO 11357-1: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 1: Allgemeine Grundlagen - Deutsche Fassung. In (2017)Google Scholar
  9. DIN EN ISO 11357-2: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 2: Bestimmung der Glasübergangstemperatur und der Glasübergangsstufenhöhe - Deutsche Fassung. In (2014)Google Scholar
  10. DIN EN ISO 11357-5: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 5: Bestimmung von charakteristischen Reaktionstemperaturen und –zeiten, Reaktionsenthalpie und Umsatz. In (2014)Google Scholar
  11. Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone. Glass Struct. Eng. (2017a).  https://doi.org/10.1007/s40940-017-0046-5
  12. Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone. Glass Struct. Eng. (2017b).  https://doi.org/10.1007/s40940-017-0048-3
  13. Fesko, D.G., Tschoegl, N.W.: Time-temperature superposition in thermorheologically complex materials. J. Polymer Sci. Part C Polym Symp. 35, 51–69 (1971).  https://doi.org/10.1002/polc.5070350106
  14. Göhler, J.: Das dreidimensionale viskoelastische Stoffverhalten im großen Temperatur- und Zeitbereich am Beispiel eines in der automobilen Aufbau- und Verbindungstechnik verwendeten Epoxidharzklebstoffs. Dissertation, Technische Universität Dresden (2010)Google Scholar
  15. Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Springer, Berlin (2014)Google Scholar
  16. Habenicht, G.: Kleben: Grundlagen, Technologien, Anwendungen, vol. 6. Springer, Berlin (2009)Google Scholar
  17. Kraus, M.A., Niederwald, M.: Generalized collocation method using Stiffness matrices in the context of the theory of linear viscoelasticity (GUSTL). Technische Mechanik 37(1), 82–106 (2017a)Google Scholar
  18. Kraus, M., Botz, M., Siebert, G.: Der Ansatz des Schubverbundes bei der Bemessung von Verbundgläsern, Teil 1- Grundlagen und Anwendungsbeispiele. Konstr. Ing. 06(2017), 43–51 (2017b)Google Scholar
  19. Kraus, M.A., Schuster, M., Botz, M., Schneider, J., Siebert, G.: Thermorheologische Untersuchungen der Verbundglaszwischenschichten PVB und EVA. Paper presented at the Glasbau, Wiley, Dresden (2017c)Google Scholar
  20. Kraus, M.A., Schuster, M., Kuntsche, J., Siebert, G., Schneider, J.: Parameter identification methods for visco- and hyperelastic material models. Glass Struct. Eng. 2(2), 147–167 (2017d).  https://doi.org/10.1007/s40940-017-0042-9
  21. Kuntsche, J., Schuster, M., Schneider, J.: Bemessung von Verbundsicherheitsglas unter Berücksichtigung des Schubverbunds. Der Bauingenieur 93, 28–36 (2018)Google Scholar
  22. Kuntsche, J.K.: Mechanisches Verhalten von Verbundglas unter zeitabhängiger Belastung und Explosionsbeanspruchung. Dissertation, Technische Universität Darmstadt (2015)Google Scholar
  23. Kuraray: Manual Verarbeitung von TROSIFOL\({\textregistered }\) PVB-Folie. In (2012)Google Scholar
  24. Lion, A., Johlitz, M.: A thermodynamic approach to model the caloric properties of semicrystalline polymers. Contin. Mech. Thermodyn. 28(3), 799–819 (2015).  https://doi.org/10.1007/s00161-015-0415-8 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Marcilla, A., Sempere, F.J., Reyes-Labarta, J.A.: Differential scanning calorimetry of mixtures of EVA and PE. Kinet. Model. Polym. 45(14), 4977–4985 (2004).  https://doi.org/10.1016/j.polymer.2004.05.016 Google Scholar
  26. Nagamatsu, K., Takemura, T., Yoshitomi, T., Takemoto, T.: Effect on crystallinity on the viscoelastic properties of polyethylene. J. Polym. Sci. 33(126), 515–518 (1958)CrossRefGoogle Scholar
  27. Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54 (1971).  https://doi.org/10.1111/j.1151-2916.1971.tb12186
  28. Rouse, P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953).  https://doi.org/10.1063/1.1699180 CrossRefGoogle Scholar
  29. Rühl, A.: On the time and temperature dependent behaviour of laminated amorphous polymers subjected to low-velocity impact. Dissertation, Technische Universität Darmstadt (2016)Google Scholar
  30. Rühl, A., Kolling, S., Schneider, J.: Characterization and modeling of poly(methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mech. Mater. 113, 102–111 (2017).  https://doi.org/10.1016/j.mechmat.2017.07.018 CrossRefGoogle Scholar
  31. Schneider, J., Kuntsche, J., Schula, S., Schneider, F., Wörner, J.-D.: Glasbau Grundlagen, Berechnung, Konstruktion, vol. 2. Springer, Berlin (2016)Google Scholar
  32. Schwarzl, P.D.F.R.: Polymermechanik. Springer, Berlin (1990)CrossRefGoogle Scholar
  33. Stark, W., Jaunich, M.: Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011).  https://doi.org/10.1016/j.polymertesting.2010.12.003 CrossRefGoogle Scholar
  34. Stommel, M., Stojek, M., Korte, W.: FEM zur Berechnung von Kunststoff- und Elastomerbauteilen. Hanser, Munich (2011)CrossRefGoogle Scholar
  35. Williams, M.L., Landel, R.F., Ferry, H.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14) (1955).  https://doi.org/10.1021/ja01619a008
  36. Woicke, N., Keuerleber, M., Hegemann, B., Eyerer, P.: Three-dimensional thermorheological behavior of isotactic polypropylene across glass transition temperature. J. Appl. Polym. Sci. 94(3), 877–880 (2004).  https://doi.org/10.1002/app.20875 CrossRefGoogle Scholar
  37. Z-70.3-230: Allgemeine bauaufsichtliche Zulassung Z-70.3-230 Verbundsicherheitsglas aus der Produktfamilie SAFLEX DG mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.) (2016)Google Scholar
  38. Z-70.3-236: Allgemeine bauaufsichtliche Zulassung Z-70.3-236 Verbund-Sicherheitsglas mit der PVB-Folie TROSIFOL ES mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.) (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Structural Mechanics and DesignTechnische Universität Darmstadt (Research Institute 1)DarmstadtGermany
  2. 2.Institute and Laboratory for Structural EngineeringUniversity of German Armed Forces Munich (Research Institute 2)NeubibergGermany

Personalised recommendations