Advertisement

Glass Structures & Engineering

, Volume 3, Issue 1, pp 39–54 | Cite as

Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone

  • Michael DrassEmail author
  • Gregor Schwind
  • Jens Schneider
  • Stefan Kolling
Research Paper

Abstract

The present paper describes different types of experimental test setups to determine material properties of thin structural silicone used as laminated connections in glass structures. Since it is of major interest to conduct homogeneous experiments with structural silicones, which belong to the family of rubber-like materials, the triaxiality will be introduced, which allows one to illustrate differences between homogeneous and inhomogeneous experiments. With the help of this scalar, it is possible to design experimental test setups, which ensure a homogeneous stress and strain distribution within the tested rubber-like material. Furthermore an engineering approach to determine the testing speed of arbitrary experiments dependent on one reference testing speed and experiment will be presented. This approach ensures equivalent strain energies between arbitrary and reference test specimens during testing, by which expensive strain rate controlled experiments can be relinquished, since rubber-like materials exhibit a strain rate dependency. Based on this, homogeneous experimental tests were conducted: uniaxial tension and compression, biaxial tension as well as shear-pancake tests. Furthermore, microindentation tests as inhomogeneous tests were performed. Afterwards the experimental results were processed in a manner that it is possible to identify hyperelastic material parameters via standard fitting routines as well as inverse methods, which will be presented in part II of this publication.

Keywords

Structural silicone Hyperelasticity Homogeneous/inhomogeneous experiments 

Notes

Acknowledgements

We would like to thank Dow Corning Inc. and Interpane Glas Industrie AG gratefully for their support during our studies by providing us testing material.

References

  1. Ansarifar, A., Lim, B.: Reinforcement of silicone rubber with precipitated amorphous white silica nanofiller-effect of silica aggregates on the rubber properties. J. Rubber Res. 9(3), 140–158 (2006)Google Scholar
  2. ASTM D638-02a Tensile testing for thermoplastics (2003)Google Scholar
  3. ASTM D732-10: Standard test method for shear strength of plastics by punch tool (2010)Google Scholar
  4. Baaser, H., Hopmann, C., Schobel, A.: Reformulation of strain invariants at incompressibility. Arch. Appl. Mech. 83(2), 273–280 (2013). doi: 10.1007/s00419-012-0652-2 CrossRefzbMATHGoogle Scholar
  5. Becker, F.: Entwicklung einer beschreibungsmethodik für das mechanische verhalten unverstärkter thermoplaste bei hohen deformationsgeschwindigkeiten. Doctoral thesis (2009)Google Scholar
  6. BS903-A14:1992 (1992) Physical testing of rubber. method for determination of modulus in shear or adhesion to rigid plates. quadruple shear methodGoogle Scholar
  7. Chen, Z., Scheffer, T., Seibert, H., Diebels, S.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013). doi: 10.1016/j.mechmat.2013.05.003, http://www.sciencedirect.com/science/article/pii/S016766361300077X
  8. Danielsson, M., Parks, D., Boyce, M.: Three-dimensional micromechanical modeling of voided polymeric materials. J. Mech. Phys. Solids 50(2), 351–379 (2002). doi: 10.1016/S0022-5096(01)00060-6 CrossRefzbMATHGoogle Scholar
  9. Drass, M., Schneider, J.: (2016a) Constitutive modeling of transparent structural silicone adhesive-tssa. In: Schrödter J (ed) 14. Darmstädter Kunststofftage, vol 14Google Scholar
  10. Drass, M., Schneider, J.: On the mechanical behavior of Transparent Structural Silicone Adhesive (TSSA), CRC Press, book section Material Modelling, Multi-Scale Modelling, Porous Media, pp 446–451 (2016b). doi: 10.1201/9781315641645-74
  11. Drass, M., Schuster, M., Schneider, J.: Comparison of unconventional testing methods for mechanical characterization of polymeric materials in modern glass structures. In: 39th IABSE Symposium—Engineering the Future (2017)Google Scholar
  12. Finnie, I., Heller, W.R.: Creep of Engineering Materials. McGraw-Hill, New York City (1959)Google Scholar
  13. Gent, A.N., Suh, J.B., Kelly III, S.G.: Mechanics of rubber shear springs. Int. J. Non Linear Mech. 42(2), 241–249 (2007). doi: 10.1016/j.ijnonlinmec.2006.11.006, http://www.sciencedirect.com/science/article/pii/S0020746206001053, special Issue in Honour of Dr Ronald S. Rivlin
  14. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996). doi: 10.5254/1.3538357 CrossRefGoogle Scholar
  15. Innowep GmbH: UST-Technical Manual Indentation, scratch, deformation, tribology, surface, profile and haptics (2012)Google Scholar
  16. Hagl, A.: Development and test logics for structural silicone bonding design and sizing. Glass Struct. Eng. 1(1), 131–151 (2016). doi: 10.1007/s40940-016-0014-5 CrossRefGoogle Scholar
  17. Haigh, B.: The strain energy function and the elastic limit. Engineering 109, 158–160 (1920)Google Scholar
  18. Hawley, S.W.: Anomalies in ISO 48, hardness of rubber. Polym. Test. 16(4), 327–333 (1997). doi: 10.1016/S0142-9418(96)00054-2 CrossRefGoogle Scholar
  19. Heyden, S., Conti, S., Ortiz, M.: A nonlocal model of fracture by crazing in polymers. Mech. Mater. 90, 131 – 139. doi: 10.1016/j.mechmat.2015.02.006, http://www.sciencedirect.com/science/article/pii/S0167663615000460, In: Proceedings of the IUTAM Symposium on Micromechanics of Defects in Solids (2015)
  20. Horgan, C., Murphy, J.: On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers. Int. J. Solids Struct. 46(16), 3078–3085 (2009). doi: 10.1016/j.ijsolstr.2009.04.007 CrossRefzbMATHGoogle Scholar
  21. Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012). doi: 10.1016/j.mechmat.2012.03.007, http://www.sciencedirect.com/science/article/pii/S0167663612000658
  22. Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32(1), 1–18 (2000)CrossRefzbMATHGoogle Scholar
  23. ISO 1827: 2011 (2011) Rubber, vulcanized or thermoplastic— determination of shear modulus and adhesion to rigid plates—quadruple-shear methodsGoogle Scholar
  24. ISO 37-2011 (2011) Rubber, vulcanized or thermoplastic— determination of tensile stress-strain propertiesGoogle Scholar
  25. ISO 7743: 2011 (2011) Rubber, vulcanized or thermoplastic—determination of compression stress-strain propertiesGoogle Scholar
  26. Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: Statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72(4), 602–632 (1999). doi: 10.5254/1.3538822 CrossRefGoogle Scholar
  27. Kao B., Razgunas, L.: On the determination of strain energy functions of rubbers. Report 0148-7191, SAE Technical Paper (1986). doi: 10.4271/860816
  28. Kolling, S.: Hyperelastodynamics in physical and material space: phenomenological models, configurational forces and micromechanical approach. Postdoctoral thesis (2007)Google Scholar
  29. Kolupaev, V.: Dreidimensionales kriechverhalten von bauteilen aus unverstaerkten thermoplasten. PhD thesis, Martin-Luther-Universitaet Halle-Wittenberg (2006)Google Scholar
  30. Le Saux, V., Marco, Y., Bles, G., Calloch, S., Moyne, S., Plessis, S., Charrier, P.: Identification of constitutive model for rubber elasticity from micro-indentation tests on natural rubber and validation by macroscopic tests. Mech. Mater. 43(12), 775–786 (2011)CrossRefGoogle Scholar
  31. Lopez-Pamies, O.: A new i1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique 338(1), 3–11 (2010). doi: 10.1016/j.crme.2009.12.007, http://www.sciencedirect.com/science/article/pii/S1631072109002113
  32. Machado, G., Favier, D., Chagnon, G.: Membrane curvatures and stress-strain full fields of axisymmetric bulge tests from 3d-dic measurements. Theory and validation on virtual and experimental results. Exp. Mech. 52(7), 865–880 (2012)CrossRefGoogle Scholar
  33. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004). doi: 10.1016/j.jmps.2004.03.011, http://www.sciencedirect.com/science/article/pii/S0022509604000808
  34. Mihai, L.A., Goriely, A.: Positive or negative poynting effect? the role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2136), 3633–3646 (2011). doi: 10.1098/rspa.2011.0281 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940). doi: 10.1063/1.1712836, http://scitation.aip.org/content/aip/journal/jap/11/9/10.1063/1.1712836
  36. Moreira, D.C., Nunes, L.C.S.: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym. Test. 32(2), 240–248 (2013). doi: 10.1016/j.polymertesting.2012.11.005, http://www.sciencedirect.com/science/article/pii/S0142941812002218
  37. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958). doi: 10.1007/bf00277929 MathSciNetCrossRefzbMATHGoogle Scholar
  38. Nunes, L.C.S., Moreira, D.C.: Simple shear under large deformation: experimental and theoretical analyses. Eur. J. Mech. A Solids 42, 315–322 (2013). doi: 10.1016/j.euromechsol.2013.07.002, http://www.sciencedirect.com/science/article/pii/S0997753813000776
  39. Overend, M.: Optimising connections in structural glass. In: Proceedings of 2nd International conference on Glass in Buildings (2005)Google Scholar
  40. O’Callaghan, E., O’Callaghan, J.: Adventures with structural glass. Glass Performance Days (2012)Google Scholar
  41. Peters, S., Fuchs, A., Knippers, J., Behling, S.: Ganzglastreppe mit transparenten sgp-klebeverbindungen—konstruktion und statische berechnung. Stahlbau 76(3), 151–156 (2007). doi: 10.1002/stab.200710017 CrossRefGoogle Scholar
  42. Petiteau, J., Verron, E., Othman, R., Le Sourne, H., Sigrist, J., Auroire, B.: Comparison of two approaches to predict rubber response at different strain rates. Const. Models Rubber VII, 149 (2011)Google Scholar
  43. Poisson, J., Méo, S., Lacroix, F., Berton, G., Ranganathan, N.: Finite element modelisation of multiaxial mechanical and fatigue behavior of a polychloroprene rubber. Const. Models Rubber VIII, 171 (2013)Google Scholar
  44. Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. Ser. A 82(557), 546–559 (1909). doi: 10.1098/rspa.1909.0059, http://rspa.royalsocietypublishing.org/content/royprsa/82/557/546.full.pdf
  45. Rivlin, R.S.: Large elastic deformations of isotropic materials. iv. further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(835), 379–397 (1948). http://www.jstor.org/stable/91391
  46. Santarsiero, M., Louter, C., Nussbaumer, A.: Laminated connections for structural glass applications under shear loading at different temperatures and strain rates. Constr. Build. Mater. 128, 214–237 (2016a). doi: 10.1016/j.conbuildmat.2016.10.045, http://www.sciencedirect.com/science/article/pii/S0950061816316592
  47. Santarsiero, M., Louter, C., Nussbaumer, A.: The mechanical behaviour of sentryglas ionomer and tssa silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state. Glass Struct. Eng. (2016b). doi: 10.1007/s40940-016-0018-1 Google Scholar
  48. Sasso, M., Amodio, D.: Development of a biaxial stretching machine for rubbers by optical methods. In: SEM Annual Conference & Exposition on Experimental and Applied Mechanics (2006)Google Scholar
  49. Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27(8), 995–1004 (2008)CrossRefGoogle Scholar
  50. Scherer, T.: Werkstoffspezifisches spannungs-dehnungs-verhalten und grenzen der beanspruchbarkeit elastischer klebungen. Doctoral thesis (2014)Google Scholar
  51. Scott, J.: Improved method of expressing hardness of vulcanized rubber. J. Rubber Res. 17, 145 (1948)Google Scholar
  52. Sedlan, K.: Viskoelastisches materialverhalten von elastomerwerkstoffen: Experimentelle untersuchung und modellbildung. Doctoral thesis (2001)Google Scholar
  53. Selvadurai, A.P.S., Shi, M.: Fluid pressure loading of a hyperelastic membrane. Int. J. Non Linear Mech. 47(2), 228–239 (2012). doi: 10.1016/j.ijnonlinmec.2011.05.011, http://www.sciencedirect.com/science/article/pii/S0020746211001193
  54. Sikora, S.P.: Materialcharakterisierung und -modellierung zur simulation von klebverbindungen mit polyurethanklebstoffen. Doctoral thesis (2014)Google Scholar
  55. Simo, J.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60(2), 153–173 (1987)CrossRefzbMATHGoogle Scholar
  56. Sitte, S., Brasseur, M., Carbary, L., Wolf, A.: Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (tssa) for point fixing in glazing. J. ASTM Int. 10(8), 1–27 (2011). doi: 10.1520/JAI104084 Google Scholar
  57. Timmel, M., Kaliske, M., Kolling, S.: Modellierung gummiartiger materialien bei dynamischer beanspruchung. ls-dyna forum, bamberg. Report, CI-1/11 (2004)Google Scholar
  58. Treloar, L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)zbMATHGoogle Scholar
  59. Van den Bogert, P., De Borst, R.: On the behaviour of rubber like materials in compression and shear. Arch. Appl. Mech. 64(2), 136–146 (1994). doi: 10.1007/BF00789105 CrossRefzbMATHGoogle Scholar
  60. Westergaard, H.M.: On the resistance of ductile materials to combined stresses in two or three directions perpendicular to one another. J. Frankl. Inst. 189(5), 627–640 (1920)CrossRefGoogle Scholar
  61. Yeoh, O.H.: On hardness and young’s modulus of rubber. Plast. Rubber Process. Appl. 4(2), 141–144 (1984)Google Scholar
  62. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)CrossRefGoogle Scholar
  63. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. Part B Polym. Phys. 35(12), 1919–1931 (1997). doi: 10.1002/(SICI)1099-0488(19970915)35:12<1919::AID-POLB7>3.0.CO;2-K

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Mechanics and MaterialsTechnische Hochschule MittelhessenGießenGermany

Personalised recommendations