Advertisement

Carbon-14 content as a support for Moura mineral water aquifer conceptual model

  • Paula M. CarreiraEmail author
  • Augusto Costa
  • António Monge Soares
  • Dina Nunes
  • Margarida João
  • Ângela Valadas
Original Article
  • 2 Downloads

Abstract

Moura–Ficalho aquifer system consists of a mixed karst-fissured system, in the driest region of SE of Portugal, with c. 187 km2 of total area, of which 85 km2 correspond to outcrops of carbonated rocks. This aquifer system is responsible for water supply to several villages in the Municipalities of Moura and Serpa, also supplying the bottling industry of the natural mineral water Pisões-Moura, and the thermal spas of “Termas de Moura”, as well as the agro-livestock needs mainly through private boreholes. To characterize this aquifer system from the chemical, isotopic and hydrodynamic point of view, several fieldwork campaigns were carried out in the region being groundwater samples were collected in springs and boreholes for physicochemical and isotopic determinations. Results allowed the identification of paleowaters in the farthermost accessible point of the system based on radiocarbon measurements. 14C content was determined in the TDIC of the mineral water samples; it varies from 6.0 ± 0.3 to 79.3 ± 0.3 pmC. Furthermore, the presence of paleowaters is enhanced by the isotopic depletion of about 0.3‰ in oxygen-18 and about 3‰ in deuterium, corroborating the hypothesis of recharge under different climatic scenarios.

Keywords

Karst-fissured aquifer Stable isotopes Carbon-14 dating Paleowaters SE Portugal 

Notes

Acknowledgements

The authors acknowledge the Câmara Municipal de Moura and to Águas Públicas do Alentejo SA for the collaboration in water sampling. C2TN/IST authors acknowledge the FCT support through the UID/Multi/04349/2013 project.

References

  1. Andreo B, Liñán C, Carrasco F, Jiménez de Cisneros C, Caballero F, Mudry J (2004) Influence of rainfall quantity on the isotopic composition (18O and 2H) of water in mountainous areas. Application for groundwater research in the Yunquera-Nieves karst aquifers (S Spain). Appl Geochem 19:561–574.  https://doi.org/10.1016/j.apgeochem.2003.08.002 CrossRefGoogle Scholar
  2. Araguás-Araguás L, Froechlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355CrossRefGoogle Scholar
  3. Azzaz H, Cherchali M, Meddi M, Houha B, Puig JM, Achachi A (2008) The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria. Hydrogeol J 16(3):531–546.  https://doi.org/10.1007/s10040-007-0235-4 CrossRefGoogle Scholar
  4. Bush MB, Stute M, Ledru M-P, Behling H, Colinvaux PA, de Oliveira PE, Grimm EC, Hooghiemstra H, Haberle S, Leyden BW, Salgado-Labouriau M-L, Webb R (2001) Paleotemperatures estimates for the Lowland Americas between 30ºS and 30ºN at the Last Glacial Maximum. In: Markgraf V (ed) Interhemispheric climate linkages. Academic, New York, pp 293–306CrossRefGoogle Scholar
  5. Carreira PM (1998) Aveiro palaeowaters (Paleoáguas de Aveiro). Ph.D Thesis, Aveiro University. http://hdl.handle.net/10773/23438
  6. Carreira PM, Soares AMM, Marques da Silva MA, Araguás-Aráguas L, Stute M, Rozanski K (1996a) Response of a coastal aquifer in Portugal to hydroclimatic changes during the last deglaciation period, traced by chemical, isotope and Noble Gases Dta. EOS Trans Am Geophys Union 7(22):W33Google Scholar
  7. Carreira PM, Soares AMM, Silva MAM, Araguás-Araguás L, Rozanski K (1996) Application of environmental isotope methods in assessing groundwater dynamics of an intensively exploited coastal aquifer in Portugal. In: Isotopes in water resources management, vol 2. IAEA, Vienna, pp 45–58Google Scholar
  8. Carreira PM, Marques JM, Graça RC, Aires-Barros L (2008) Radiocarbon application in dating ‘‘complex” hot and cold CO2-rich mineral water systems: a review of case studies ascribed to the northern Portugal. Appl Geochem 23:2817–2828CrossRefGoogle Scholar
  9. Carreira PM, Nunes D, Valerio P, Araujo MF (2009) A 15-year record of seasonal variation in the isotopic composition of precipitation water over continental Portugal. J Radioanal Nucl Chem 281:153–156CrossRefGoogle Scholar
  10. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  11. Costa AM (1991) Sistemas aquíferos da região de Moura. Comun Serv Geol Portugal Tomo 77:133–146 (in Portuguese) Google Scholar
  12. Costa AM (1992) Características Hidrogeológicas dos “Calcários de Moura”. Comunicações dos Serviços Geológicos de Portugal Tomo 78(1):3–11 (in Portuguese) Google Scholar
  13. Costa AM (1998) Sistema aquífero Moura-Ficalho. In: Proceedings of 4º Congresso da Água, Lisboa, p 14 (in Portuguese) Google Scholar
  14. Costa ATM (2007) Karstic aquifers and climate changes Moura-Ficalho case study. In: Ribeiro L, Chambel A, Condesso de Melo MT (eds) Proceedings of XXXV congress of the international association of hydrogeologists, groundwater and ecosystems. ISBN 978-989-95297Google Scholar
  15. Costa AM (2008) Modelação matemática dos recursos hídricos subterrâneos da região de Moura. PhD Thesis, IST, Technical University of Lisbon, Portugal, p 272 (in Portuguese) Google Scholar
  16. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703CrossRefGoogle Scholar
  17. Criss R, Davisson L, Surbeck H, Winston W (2007) Isotopic methods: In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology, pp 123–145Google Scholar
  18. Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4:436–468Google Scholar
  19. Darling WG, Talbot JC (2003) The O & H stable isotopic composition of fresh waters in the British Isles. 1. Rainfall. Hydrol Earth Syst Sci 7(2):163–181CrossRefGoogle Scholar
  20. Darling WG, Edmunds WM, Smedley PL (1997) The isotopic composition of palaeowaters in the British Isles. Appl Geochem 12:813–829CrossRefGoogle Scholar
  21. Darling WG, Bath AH, Talbot JC (2003) The O & H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrol Earth Syst Sci 7(2):183–195CrossRefGoogle Scholar
  22. Dennis F, Andrews JN, Parker A, Poole J, Wolf M (1997) Isotopic and noble gas study of Chalk groundwater in the London basin, England. Appl Geochem 12:763–773CrossRefGoogle Scholar
  23. Edmunds WM (2005) Groundwater as an archive of climatic and environmental change. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle. Past, present and future of a developing science. Springer, Dordrecht, pp 341–352Google Scholar
  24. Edmunds WM, Droubi A (1998) Groundwater salinity and environmental change. Isotope techniques in the study of environmental change. IAEA, Vienna, pp 503–518Google Scholar
  25. Fernandes J, Francés A, Costa A (2006) Análise espacial da hidrogeoquímica do sistema aquífero Moura-Ficalho (hydrogeochemical spatial analysis of Moura-Ficalho Aquifer system. In: Proceedings VII Congresso Nacional de Geologia, Évora, p 4Google Scholar
  26. Fernández-Chacon F, Benavente J, Rubio-Campos JC, Kohfahl C, Jiménez J, Meyer H, Hubberten H, Pekdeger A (2010) Isotopic composition (δ18O and δD) of precipitation and groundwater in a semi-arid, mountainous area (Guadiana Menor basin, Southeast Spain). Hydrol Process 24:1343–1356Google Scholar
  27. Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392.  https://doi.org/10.1007/s10040-013-1019-7 CrossRefGoogle Scholar
  28. Galego Fernandes P, Carreira PM (2008) Isotopic evidence of aquifer recharge during the last ice age in Portugal. J Hydrol 361:291–308.  https://doi.org/10.1016/j.jhydrol.2008.07.046 CrossRefGoogle Scholar
  29. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor & Francis Group, LondonGoogle Scholar
  30. Goldscheider N, Mádl-Szonyi J, Eross A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18:1303–1318CrossRefGoogle Scholar
  31. Gonfiantini R (1988) Carbon isotope exchange in karst groundwater. In: 21st congress on karst hydrology and karst environment protection. Vol. XXI. Part 2 (Ed. Association of Hydrological Sciences), Guilin, pp 832–837Google Scholar
  32. Gonfiantini R, Zuppi GM (2003) Carbon isotopic exchange rate of DIC in karst groundwater. Chem Geol 197:319–336CrossRefGoogle Scholar
  33. Gourcy LL, Groening M, Aggarwal PK (2005) Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle. Past present and future of a developing science. Springer, Dordrecht, pp 39–51Google Scholar
  34. Goy JL, Zazo C, Dabrio CJ, Lario J, Borja F, Sierro FJ, Flores JA (1996) Global and regional factors controlling changes of coastlines in Southern Iberia (Spain) during the Holocene. Quat Sci Rev 15:773–780CrossRefGoogle Scholar
  35. Han LF, Plummer LN (2016) A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth Sci Rev 152:119–142.  https://doi.org/10.1016/j.earscirev.2015.11.004 CrossRefGoogle Scholar
  36. Han LF, Plummer LN, Aggarwal P (2012) A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem Geol 318–319:88–112.  https://doi.org/10.1016/j.chemgeo.2012.05.004 CrossRefGoogle Scholar
  37. IAEA [International Atomic Energy Agency] (1976) Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. Technical Procedure 19, IAEA-IHS Laboratories, Vienna (internal report)Google Scholar
  38. IAEA [International Atomic Energy Agency] (1981) Sampling of water for 14C analysis. IAEA-IHS Laboratories, Vienna (internal report)Google Scholar
  39. Jeelani G, Deshpande RD, Galkowski M, Rozanski K (2018) Isotopic composition of daily precipitation along southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture. Atmos Chem Phys 18:8789–8805.  https://doi.org/10.5194/acp-18-8789-2018 CrossRefGoogle Scholar
  40. Lepiller M, Blavoux B, Brusset S, Bruxelles L, Danneville L, Mangin A, Marchet P (2007) Multidisciplinary approach to a karstic region for the use and protection of the water resource. Application to the Causse de Sauveterre (South of France). In: Chery L, de Marsily G (eds) Aquifer systems management: Darcy’s legacy in a world of impeding water shortage, Chap 24. Taylor & Francis Group, London, pp 317–331Google Scholar
  41. Liotta M, Bellissimo S, Favara R, Valenza M (2008) Isotopic composition of single rain events in the Central Mediterranean. J Geophys Res 113:16304.  https://doi.org/10.1029/2008jd009996 (p 10) CrossRefGoogle Scholar
  42. Marques JM, Graça H, Eggenkamp HGM, Neves O, Carreira PM, Matias MJ, Mayer B, Nunes D, Trancoso VN (2013) Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water–rock interaction in the Caldas da Rainha-Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal). J Hydrol 476:302–313.  https://doi.org/10.1016/j.jhydrol.2012.10.047 CrossRefGoogle Scholar
  43. Mook WG (2000) Environmental isotopes in hydrological cycle. Principles and applications, IHP-V, Technical Documents in Hydrology, 39 (I), UNESCO and IAEA, ParisGoogle Scholar
  44. Oliveira JT (1991) Folha 8 da carta geológica de Portugal na escala 1:200.000. Serviços geológicos de Portugal, Lisboa (in Portuguese) Google Scholar
  45. Ribeiro L, Dill AC; Nunes LM, Pina P, Barata T, Grueau C, Oliveira E, Vieira J, Costa A, Fernandes J, Paralta E, Midões C, Lourenço C, Francés A (2002) O Parque Natural Hidrogeológico de Moura: contributos para a sua definição. In: Proceedings 6º Congresso da Água, Porto, p 15 (in portuguese) Google Scholar
  46. Rozanski K (1985) Deuterium and oxygen-18 in European groundwaters—links to atmospheric circulation in the past. Chem Geol (Isotope Geoscience Section) 52:349–363CrossRefGoogle Scholar
  47. Rozanski K, Araguás-Araguás L, Gonfiantini R (1992) Relation between long-term of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985CrossRefGoogle Scholar
  48. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KI, McKenzie J, Savin S (eds) Climate change in continental isotopic records, geophysical monograph series, vol 78. AGU, Washington DC, pp 1–36Google Scholar
  49. Stute M, Deak J (1989) Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31:902–918CrossRefGoogle Scholar
  50. Stute M, Forser M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broecker WS, Bonani G (1995) Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269:379–383CrossRefGoogle Scholar
  51. Van der Perk M (2007) Soil and water contamination from molecular to catchment scale. Taylor & Francis Group, BalkemaGoogle Scholar
  52. Zazo C, Goy JL, Lario J, Silva PG (1996) Littoral zone and rapid climatic changes during the last 20, 000 years. The Iberia study case. Z Geomorph N F Suppl 102:119–134Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversity of LisbonBobadela LRSPortugal
  2. 2.Geodiscover, LdaAlcochetePortugal
  3. 3.Câmara Municipal de MouraMouraPortugal
  4. 4.Águas Públicas do Alentejo, SABejaPortugal

Personalised recommendations