Aquifer recharge with treated municipal wastewater: long-term experience at San Luis Río Colorado, Sonora

  • Hernández Aguilar M. Humberto
  • Campuzano Chávez Raúl
  • Valenzuela Vásquez Lorenzo
  • Ramírez-Hernández Jorge
Original Article

Abstract

This paper presents 10 years of experience in recharging reclaimed waters via infiltration basins in order to reverse overdraft in a previously overexploited aquifer. First, the feasibility of artificial recharge was evaluated using an infiltration experiment to estimate the percolation rates and the capacity for reclaimed water treatment by passing groundwater and treated wastewater through the soil vadose zone to the aquifer in a pilot pond. Ongoing physicochemical and bacteriological monitoring of the reclaimed and recharged water introduced to the aquifer was then conducted to ensure that the native groundwater was not contaminated. After transit through a 20-m-thick vadose zone, the concentration of chloride, manganese and iron increased due to evaporation and dissolution processes, and total removal of coliforms was observed. We found that low water levels in ponds prevented the transport of fine particles to deep layers of the soil vadose zone and maintained a concentration of total suspended solids (TSS) less than 30 mg/l, thus reducing the volume of particles clogging the soil. The pilot test and maintenance practices described in this work have been followed in the development of managed aquifer recharge projects in other semiarid regions.

Keywords

Managed aquifer recharge Treated municipal wastewater Colorado river Arid lands 

References

  1. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. J Hydrol 10:121–142. doi:10.1007/s10040-001-0182-4 Google Scholar
  2. CONAGUA (2008) Determinación de la Disponibilidad de Agua en el Acuífero 2601 Valle de San Luis Río Colorado, Estado de Sonora. SEMARNAT. 4 de Enero del 2013Google Scholar
  3. Custodio E (2002) Aquifer overexploitation: what does it mean? J Hydrol 10:254–277. doi:10.1007/s10040-002-0188-6 Google Scholar
  4. Dickinson JE, Land M, Faunt CC, Leake SA, Reichard EG, Fleming JB, Pool DR (2006) Hydrologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, Southwestern Arizona and Southeastern California. Reston, Virginia. Scientific Investigation Report 2006-5135Google Scholar
  5. Dillon P (2009) Water recycling via managed aquifer recharge in Australia. Bol Geol y Min 120:121–130Google Scholar
  6. Dillon P, Toze S, Page D, Vanderzalm J, Bekele E, Sidhu J, Rinck-Pfeiffer S (2010) Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci Technol 62:2338–2345. doi:10.2166/wst.2010.444 CrossRefGoogle Scholar
  7. Drewes JE (2009) Ground water replenisment with recycled water—water quality improvements during managed aquifer recharge. Ground Water 47:502–505. doi:10.1111/j.1745-6584.2009.00587_5.x CrossRefGoogle Scholar
  8. Fair GM, Geyer JC, Okun DA (1966) Water and wastewater engineering. In: Water and wastewater engineering. Wiley, New YorkGoogle Scholar
  9. Fernández-Escalante ÁE, García-Rodríguez M, Villarroya F (2005) Inventario de experiencias de recarga artificial de acuíferos en el mundo. Tecnol y Desarro 3:4–24Google Scholar
  10. Kennedy J, Rodriguez-Burgueño JE, Ramirez-Hernandez J (2016) Groundwater response to the 2014 pulse flow in the Colorado River Delta. Ecol Eng (in press) Google Scholar
  11. Langergraber G, Haberl R, Laber J, Pressl A (2003) Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Sci Technol 48:25–34Google Scholar
  12. Olmsted FH, Loeltz OJ, Irelan B (1973) Geohydrology of the Yuma Area, Arizona and California. Water Resources of Lower Colorado River-Salton Sea Area vol Professional Paper 486-H. Washington, D.C., Estado Unidos de AmericaGoogle Scholar
  13. Ramírez-Hernández J, Valenzuela L, Ortiz-Uribe N (2013) Estudio de Identificación de los Estratos Geológicos que Aportan Fierro y Manganeso al Agua de la Ciudad de San Luis Río Colorado, Sonora. Universidad Autonoma de Baja California. Instituto de Ingeniería. Reporte Interno del Contrato No. OOMAPAS-SLRCAPAZU-07-2013 realizado para el OOMAPAS de San Luis Río Colorado Sonora, Mexicali, Baja California, MéxicoGoogle Scholar
  14. Reyes-López J, Ramírez-Hernández J, Sol-Uribe A, Valenzuela-Vasquez L, Lazaro-Mancilla O (2005) Estudio Geohidrológico puntual para obtener las características hidráulicas del acuífero donde se pretende realizar el proyecto de recarga del acuífero mediante la infiltración con agua residual tratada. Reporte Interno. Organismo Operador Municipal Agua Potable y Alcantarillado de San Luis Río Colorado, Sonora. Elaborado por la Universidad Autonoma de Baja California, Instituto de Ingeniería, Mexicali, Baja California, MéxicoGoogle Scholar
  15. Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, Vandevelde T (2000) Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Res 34:2110–2118. doi:10.1016/S0043-1354(99)00356-5 CrossRefGoogle Scholar
  16. SEMARNAT (1997) Norma Oficial Mexicana NOM-001-ECOL-1996. Establece los Límites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. Diario Oficial de la Federación. Ciudad de Mexico, D.F. 6 de enero de 1997Google Scholar
  17. SEMARNAT (2008) Norma Oficial Mexicana NOM-014-CONAGUA-2003, Requisitos para la recarga artificial de acuíferos con agua residual tratada. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, México, D.F. 3 de junio de 2008Google Scholar
  18. SEMARNAT (2014) Programa Nacional Hídrico 2014–2018 vol PNH 20142018. Secretaría de Gobernación. Secretaría de Medio Ambiente y Recursos Naturales, MéxicoGoogle Scholar
  19. Siriwardene NR, Deletic A, Fletcher TD (2007) Clogging of stormwater gravel infiltration systems and filters: insights from a laboratory study. Water Res 41:1433–1440. doi:10.1016/j.watres.2006.12.040 CrossRefGoogle Scholar
  20. Sol A, Reyes-Lopez J, Ramirez-Hernández J, Hernández AH, Lara GF, Valenzuela-Vasquez L, Lazaro MO (2008) Estudio Experimental para Evaluar la Calidad del Agua Residual Infiltrada del Proyecto de Recarga Artificial en San Luis Río Colorado, Sonora, México Ingeniería Hidráulica de México XXIII:89-101Google Scholar
  21. SSA (1996) NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Secretaría de Salud. Diario Oficial de la Federación, Ciudad de Mexico, D.F. 18 de Enero de 1996Google Scholar
  22. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett. doi:10.1029/2010GL044571 Google Scholar
  23. Wang Z, Du X, Yang Y, Ye X (2012) Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge. J Environ Sci 24:1418–1424. doi:10.1016/S1001-0742(11)60961-3 CrossRefGoogle Scholar
  24. Ye X, Du X, Li S, Yang Y Study on clogging mechanism and control methods of artificial recharge. In: International Conference on Challenges in environmental science and computer engineering (CESCE), 2010. IEEE, pp 29–32. doi:10.1109/CESCE.2010.176

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Organismo Operador Municipal de Agua Potable, Alcantarillado y Saneamiento de San Luis Río Colorado, SonoraSan Luis Río ColoradoMéxico
  2. 2.Universidad Estatal de SonoraSan Luis Río ColoradoMéxico
  3. 3.Universidad Autónoma de Baja California, Instituto de IngenieríaMexicaliMéxico

Personalised recommendations