Advertisement

Hydrogeological and geochemical evidence for the origin of brackish groundwater in the Shabestar plain aquifer, northwest Iran

  • Sadegh Saberi MehrEmail author
  • Asghar Asghari Moghaddam
  • Malcolm S. Field
Original Article

Abstract

Shabestar plain aquifer is located in the northeast of the hypersaline Urmia Lake, northwest Iran. There are two types of the aquifer in the plain: an unconfined aquifer that covers the plain and a confined aquifer that is just in the vicinity of the lake. In recent years, some of the agricultural wells have become salinized by saline water due to unrestricted groundwater pumping. Groundwater in the confined aquifer in comparison with the above unconfined aquifer is of good quality. The salty Urmia Lake is considered the most probable source of groundwater salinization. Other potential sources of groundwater salinization could include halite dissolution, and halite is exposed at the southern end of Shabestar plain, and evaporation from the shallow water table. The water samples, based on their total dissolved solid and chloride contents, are classified in the brackish group. The hydrogeological setting and boreholes log interpretation suggest that the saltwater is the result of Urmia Lake water that is entrapped within the fine-grained matrix from when the lake reached its greatest extent. The ratios of Na/Cl, Br/Cl, (Ca + Mg)/SO4, Mg/Cl, (2Ca + Na)/Cl and Rittenhouse diagram preclude halite dissolution as a salinity source and confirm that the lake water with the composition of seawater is the main cause of groundwater salinization. In addition, Li/Cl ratios indicate that the original briny water was somewhat affected by evaporation. However, the effect of evaporation was found to be, at most, a minor influence only.

Keywords

Coastal aquifer Groundwater salinization Salty Urmia Lake Hydrogeological setting 

Notes

Acknowledgements

This research was supported by Tabriz University. We would like to take this opportunity to thank Tabriz University for providing financial support for this study.

References

  1. Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359(1):189–207. doi: 10.1016/j.jhydrol.2008.06.028 CrossRefGoogle Scholar
  2. Alipour S (2006) Hydrogeochemistry of seasonal variation of Urmia salt lake. Iran Saline Syst 2(9):9. doi: 10.1186/1746-1448-2-9 CrossRefGoogle Scholar
  3. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation (1915) Standard methods for the examination of water and wastewater, vol 2. American Public Health AssociationGoogle Scholar
  4. Bagheri R, Nadri A, Raeisi E, Kazemi G, Eggenkamp H, Montaseri A (2014) Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches. Environ Earth Sci 72(4):1055–1072. doi: 10.1007/s12665-013-3022-7 CrossRefGoogle Scholar
  5. Bavaghar N, Ghazban F (1998) Geochemistry and the source of salt of Urmia Lake. In: 1st conference on Iran marine geology, Chabahar, Iran. Sistan and Baluchestan universityGoogle Scholar
  6. Birkle P, Aragón JR, Portugal E, Aguilar JF (2002) Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. Am Assoc Pet Geol Bull 86(3):457–484Google Scholar
  7. Bottomley D, Katz A, Chan L, Starinsky A, Douglas M, Clark I, Raven K (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? new lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155(3):295–320. doi: 10.1016/S0009-2541(98)00166-1 CrossRefGoogle Scholar
  8. Carpenter AB et al (1978) Origin and chemical evolution of brines in sedimentary basins. In: SPE annual fall technical conference and exhibition. Society of Petroleum Engineers. doi: 10.2118/7504-MS
  9. Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231(1):38–56. doi: 10.1016/j.chemgeo.2005.12.009 CrossRefGoogle Scholar
  10. Custodio E, Llamas MR et al (1976) Hidrología subterránea. ed. OmegaGoogle Scholar
  11. Daneshvar NHA (1995) Physico-chemical study of Uromia Lake water. Ecology 17(17):34–41Google Scholar
  12. Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Groundwater 42(6):902–909CrossRefGoogle Scholar
  13. Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Groundwater 36(2):338–350. doi: 10.1111/j.1745-6584.1998.tb01099.x CrossRefGoogle Scholar
  14. Davoudzadeh M, Lammerer B, Weber-Diefenbach K (1997) Paleogeography, stratigraphy, and tectonics of the Tertiary of Iran. Neues Jahrb Geol Palaontol Abh 205(3):33–68Google Scholar
  15. Djamali M, de Beaulieu J-L, Shah-hosseini M, Andrieu-Ponel V, Ponel P, Amini A, Akhani H, Leroy SA, Stevens L, Lahijani H et al (2008) A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat Res 69(3):413–420. doi: 10.1016/j.yqres.2008.03.004 CrossRefGoogle Scholar
  16. Dror G, Ronen D, Stiller M, Nishri A (1999) Cl/Br ratios of Lake Kinneret, pore water and associated springs. J Hydrol (Amst) 225(3):130–139. doi: 10.1016/S0022-1694(99)00155-9 CrossRefGoogle Scholar
  17. Edmunds W, Smedley P (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15(6):737–752. doi: 10.1016/S0883-2927(99)00079-7 CrossRefGoogle Scholar
  18. Eimanifar A, Mohebbi F (2007) Urmia Lake (Northwest Iran): a brief review. Saline Syst 3(5):1–8. doi: 10.1186/1746-1448-3-5 Google Scholar
  19. YEKOM Consulting Engineers (2002) Management plan for the Lake Uromiyeh ecosystem. Report 1 of the EC-IIP Environmental Management Project for Lake Uromiyeh, Iran. YEKOM Consulting Engineers, TehranGoogle Scholar
  20. Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: Chemistry, Geology, and Physics. Springer, Berlin, Heidelberg, New York, pp 237–293. doi: 10.1007/978-1-4757-1152-3_8 CrossRefGoogle Scholar
  21. Fidelibus M, Giménez E, Morell I, Tulipano L (1993) Salinization processes in the Castellon plain aquifer. Study and modelling of saltwater intrusion into aquifers. CIMNE-UPC, Barcelona, pp 267–283Google Scholar
  22. Field M (1993) Multilevel pumping wells as a means for remediating a contaminated coastal aquifer. Technical Report EPA/600/R-93/209, US Environmental Protection Agency, Washington, DCGoogle Scholar
  23. Flury M, Papritz A (1993) Bromide in the natural environment: occurrence and toxicity. J Environ Qual 22(4):747–758CrossRefGoogle Scholar
  24. Fontes JC, Matray J (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chem Geol 109(1):149–175. doi: 10.1016/0009-2541(93)90068-T CrossRefGoogle Scholar
  25. Freeman JT (2007) The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrogeol J 15(7):1377–1385. doi: 10.1007/s10040-007-0201-1 CrossRefGoogle Scholar
  26. Freeze R, Cherry J (1979) Groundwater. Prentice-Hall Inc, EnglewoodGoogle Scholar
  27. Furon R (1941) Geologie du plateau Iranien: (Perse-Afghanistan-Beloutchistan). Museum National d’histoire naturelleGoogle Scholar
  28. Gimenez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environ Geol 29(1–2):118–131. doi: 10.1007/s002540050110 Google Scholar
  29. Han D, Kohfahl C, Song X, Xiao G, Yang J (2011) Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China. Appl Geochem 26(5):863–883. doi: 10.1016/j.apgeochem.2011.02.007 CrossRefGoogle Scholar
  30. Han D, Post VE, Song X (2015) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J Hydrol. doi: 10.1016/j.jhydrol.2015.11.013 Google Scholar
  31. Herczeg A, Dogramaci S, Leaney F (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52(1):41–52CrossRefGoogle Scholar
  32. Hogan CM (2011) Lake Urmia. In: Saundry P, Cleveland CJ (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington DCGoogle Scholar
  33. Jahanshahi R, Zare M (2016) Hydrochemical investigations for delineating salt-water intrusion into the coastal aquifer of Maharlou Lake, Iran. J Afr Earth Sci 121:16–29. doi: 10.1016/j.jafrearsci.2016.05.014 CrossRefGoogle Scholar
  34. Jahanshahi R, Zare M (2017) Delineating the origin of groundwater in the Golgohar mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environ. doi: 10.1007/s10230-017-0444-6 Google Scholar
  35. James G, Wynd J (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49(12):2182–2245Google Scholar
  36. Kelley WP (1948) Cation exchange in soils. Reinhold Publishing Corporation, New York, p 144Google Scholar
  37. Kelts K, Shahrabi M (1986) Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 54(1):105–130. doi: 10.1016/0031-0182(86)90120-3 CrossRefGoogle Scholar
  38. Kharroubi A, Tlahigue F, Agoubi B, Azri C, Bouri S (2012) Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia. Environ Earth Sci 67(7):2089–2100. doi: 10.1007/s12665-012-1648-5 CrossRefGoogle Scholar
  39. Khaska M, La Salle CLG, Lancelot J, Mohamad A, Verdoux P, Noret A, Simler R et al (2013) Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl Geochem 37:212–227. doi: 10.1016/j.apgeochem.2013.07.006 CrossRefGoogle Scholar
  40. Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Acta 65(22):4087–4101. doi: 10.1016/S0016-7037(01)00640-8 CrossRefGoogle Scholar
  41. Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC Press, LondonGoogle Scholar
  42. Lak R, Darvishikhatuoni J, Mohammadi A (2012) Study of paleolimnology and causes of sudden decrease of Urmia Lake water level. J Geotech Geol 7(4):343Google Scholar
  43. Leeman WP, Sisson VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. In: Boron: mineralogy, petrology and geochemistry in the earthâĂŹs crust, pp 645–707Google Scholar
  44. Leonard A, Ward P (1962) Use of Na/Cl ratios to distinguish oil-field from salt-spring brines in western Oklahoma. Geol Surv Res 1962:126–127Google Scholar
  45. Livingstone DA (1963) Chemical composition of rivers and lakes. US Government Printing OfficeGoogle Scholar
  46. Löffler H (1956) Ergebnisse der Österreichischen Iran Expedition 1949–50: Limnologische Untersuchungen an Iranishchen Binnengewässern. Hydrobiology 8:201–278CrossRefGoogle Scholar
  47. Lui-Heung C, Gieskes JM, Chen-Feng Y, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58(20):4443–4454. doi: 10.1016/0016-7037(94)90346-8 CrossRefGoogle Scholar
  48. Mazor E, Dekker M (1997) Chemical and isotopic groundwater hydrology. Environ Int 2(23):265Google Scholar
  49. Mirecki JE, Parks WS (1994) Leachate geochemistry at a municipal landfill, Memphis, Tennessee. Groundwater 32(3):390–398. doi: 10.1111/j.1745-6584.1994.tb00656.x CrossRefGoogle Scholar
  50. Neal C, Fox KK, Harrow M, Neal M (1998) Boron in the major UK rivers entering the North Sea. Sci Total Environ 210:41–51. doi: 10.1016/S0048-9697(98)00043-6 CrossRefGoogle Scholar
  51. Paillet FL, Reese RS (2000) Integrating borehole logs and aquifer tests in aquifer characterization. Groundwater 38(5):713–725. doi: 10.1111/j.1745-6584.2000.tb02707.x CrossRefGoogle Scholar
  52. Paropkari A (1990) Geochemistry of sediments from the Mangalore-Cochin shelf and upper slope off southwest India: geological and environmental factors controlling dispersal of elements. Chem Geol 81(1):99–119. doi: 10.1016/0009-2541(90)90041-5 CrossRefGoogle Scholar
  53. Pengra B (2012) The drying of IranâĂŹs Lake Urmia and its environmental consequences. UNEP-GRID, Sioux Falls, UNEP Global Environmental Alert Service (GEAS)Google Scholar
  54. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25(6):914–928. doi: 10.1029/TR025i006p00914 CrossRefGoogle Scholar
  55. Reichenbacher B, Alimohammadian H, Sabouri J, Haghfarshi E, Faridi M, Abbasi S, Matzke-Karasz R, Fellin MG, Carnevale G, Schiller W et al (2011) Late Miocene stratigraphy, palaeoecology and palaeogeography of the Tabriz Basin (NW Iran, Eastern Paratethys). Palaeogeogr Palaeoclimatol Palaeoecol 311(1):1–18. doi: 10.1016/j.palaeo.2011.07.009 CrossRefGoogle Scholar
  56. Rittenhouse G (1967) Bromine in oil-field waters and its use in determining possibilities of origin of these waters. Am Assoc Pet Geol Bull 51(12):2430–2440Google Scholar
  57. Rose EF, Chaussidon M, France-Lanord C (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim Cosmochim Acta 64(3):397–408. doi: 10.1016/S0016-7037(99)00117-9 CrossRefGoogle Scholar
  58. Sánchez-Martos F, Pulido-Bosch A, Molina-Sánchez L, Vallejos-Izquierdo A (2002) Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci Total Environ 297(1):43–58. doi: 10.1016/S0048-9697(01)01011-7 CrossRefGoogle Scholar
  59. Sanders LL (1991) Geochemistry of formation waters from the Lower Silurian Clinton Formation (Albion Sandstone), Eastern Ohio (1). Am Assoc Pet Geol Bull 75(10):1593–1608Google Scholar
  60. Schwartz FW, Zhang H (2003) Fundamentals of ground water. Wiley, New YorkGoogle Scholar
  61. Sen Z (1995) Applied hydrogeology for scientists and engineers. CRC Press Inc, Boca RatonGoogle Scholar
  62. Sonnenfeld P (1984) Brines and evaporites. Academic Press, New YorkGoogle Scholar
  63. Stöcklin J (1971) Stratigraphic lexicon of Iran. Geological Survey of IranGoogle Scholar
  64. Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim Cosmochim Acta 55(1):309–325. doi: 10.1016/0016-7037(91)90420-A CrossRefGoogle Scholar
  65. Stuyfzand P, Stuurman RJ (1994) Recognition and genesis of various brackish to hypersaline groundwaters in the Netherlands. In: Proceedings of 13th Salt Water Intrusion Meeting. University of Cagliari Sardinia, pp 125–136Google Scholar
  66. Todd D (1980) Groundwater hydrology, 2nd edn. Wiley, New YorkGoogle Scholar
  67. Tulipano L, Fidelibus M (1984) Geochemical characteristics of Apulian coastal springs water (Southern Italy) related to mixing processes of ground waters with sea water having different residence time into the aquifer. Proceeding of the fifth international conference on water resources planing and management. European mediterranean commission for water planning (EMCWP), Athens, pp 255–267Google Scholar
  68. Uhlman K (1991) The geochemistry of boron in a landfill monitoring program. Groundw Monit Remediat 11(4):139–143. doi: 10.1111/j.1745-6592.1991.tb00401.x CrossRefGoogle Scholar
  69. Vengosh A, Pankratov I (1998) Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Groundwater 36(5):815–824. doi: 10.1111/j.1745-6584.1998.tb02200.x CrossRefGoogle Scholar
  70. Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta 55(6):1689–1695. doi: 10.1016/0016-7037(91)90139-V CrossRefGoogle Scholar
  71. Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci USA 109(30):11961–11966CrossRefGoogle Scholar
  72. Weaver T, Frape S, Cherry J (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan basin. Geol Soc Am Bull 107(6):697–707. doi: 10.1130/0016-7606(1995) 107<0697:RCFFFA>2.3.CO;2 CrossRefGoogle Scholar
  73. Whittemore DO (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31Google Scholar
  74. Yamani M, Moghimi E, Lak R, Jafar Beiglu M, Salehipour Milani A (2015) Reconstruction of quaternary paleo lake levels of Urmia by studying lake terraces. Phys Geogr Res Q 47:1–19Google Scholar
  75. Zarei M, Raeisi E, Merkel BJ, Kummer N-A (2013) Identifying sources of salinization using hydrochemical and isotopic techniques, Konarsiah, Iran. Environ Earth Sci 70(2):587–604. doi: 10.1007/s12665-012-2143-8 CrossRefGoogle Scholar
  76. Zarghami M (2011) Effective watershed management; case study of Urmia Lake, Iran. Lake Reserv Manag 27(1):87–94. doi: 10.1080/07438141.2010.541327 CrossRefGoogle Scholar
  77. Zherebtsova I, Volkova N (1966) Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochem Int 3:656–670Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sadegh Saberi Mehr
    • 1
    Email author
  • Asghar Asghari Moghaddam
    • 1
  • Malcolm S. Field
    • 2
  1. 1.Department of earth sciences, Faculty of sciencesUniversity of TabrizTabrizIran
  2. 2.U.S. Environmental Protection Agency, National Center for Environmental Assessment (8623P)WashingtonUSA

Personalised recommendations