Advertisement

Burn and Wound Healing Using Radiation Sterilized Human Amniotic Membrane and Centella asiatica Derived Gel: a Review

  • Md. Liakat Hossain
  • Md. Arifur Rahman
  • Ayesha Siddika
  • M. H. Adnan
  • Hafizur Rahman
  • Farzana Diba
  • Md. Zahid Hasan
  • S. M. AsaduzzamanEmail author
Article
  • 5 Downloads

Abstract

Burn injury is a common clinical concern that leads to morbidity and mortality, especially in the developing countries. Nowadays, it is a world-wide challenge for the patients due to the long-term hospital stay and undue side effects for microbial contamination of marketed burn dressing materials. So, scientists are trying hard to find out materials with fewer side effects, more cost-effective, and easily available to reduce the sufferings of burn patients. For this, researchers from all over the world are giving great focus on the biomaterials such as human amniotic membrane (AM) and various plant extracts. AM and Centella asiatica (CA), a medicinal plant, are individually used for burn and wound healing. AM heals quicker than any other wound healing components in the case of 1st- and 2nd-degree burn. Furthermore, CA contains various important alkaloids, phenolics, asiatic acid, madecassic acid, asiaticoside, and madecassoside. Among them, asiatic acid and madecassic acid exert anti-inflammatory, apoptotic effect, while asiaticoside and madecassoside stimulate collagen (I, II, III) synthesis, new blood vessel formation that ultimately helps to burn wound healing. Moreover, vimentin and α-SMA produced by CA also help in faster healing. Since burn patients suffer a lot of difficulties and complexities due to the slow rate of epithelization, a time-consuming process and several side effects of the available burn-healing agents, this review focuses on the synergistic and complementary effects of AM and CA for faster burn and wound healing.

Lay Summary

Burn injury is increasing day by day worldwide and this phenomenon is suspected to be persistent. Although treatment exists, it is expensive and takes a longer period to heal and sometimes shows adverse effects. Since AM and CA are available and widely used as burn and wound dressing material, a gel mixed with both of them may be used to boost up burn healing.

Keywords

Burn and wound injury Amniotic membrane (AM) Centella asiatica (CA) The combined effect Faster healing 

Abbreviations

AM

amniotic membrane

CA

Centella asiatica

SSD

silver sulfadiazine

ITBBR

Institute of Tissue Banking and Biomaterial Research

VEGF

vascular endothelial growth factor

HGF

hepatocyte growth factor

TGF

transforming growth factor

HLA

human leukocyte antigen

DR

differential regulation

MSC

mesenchymal stem cells

SLPI

secretary leukocyte proteinase inhibitor

AECS

amniotic epithelial cells

AMCS

amniotic mesenchymal cells

Notes

Acknowledgments

I would like to thank all the authors of this study.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The Institute of Tissue Banking and Biomaterial Research (ITBBR) performs its research and developmental activities with human tissue samples under the authority of the Bangladesh Atomic Energy Commission with the strong cooperation of the International Atomic Energy Commission (IAEA). Besides, two government bills had been passed entitled “Human Organ/Tissue Donation and Transplantation Act (5/1999)” and “Safe Blood Transfusion Act (12/2002)”. ITBBR strongly follows the guideline of IAEA regarding Tissue Banking set up, e.g., the American Association of Tissue Bank (AATB) and the European Association of Tissue Bank (EATB). And samples are collected at ITBBR getting informed consent from the patients.

References

  1. 1.
    Mohammadi AA, Amini M, Mehrabani D, Kiani Z, Seddigh A. A survey on 30 months electrical burns in Shiraz University of Medical Sciences burn hospital. Burns. 2008;34:111–3.CrossRefGoogle Scholar
  2. 2.
    Pasalar M, Mohammadi A, Rajaeefard A, Neghab M, Tolide-ie HR, Mehrabani D. Epidemiology of burns during pregnancy in southern Iran: effect on maternal and fetal outcomes. World Appl Sci J. 2013;28:153–8.Google Scholar
  3. 3.
    Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch Dermatol Res. 2013;305:585–94.CrossRefGoogle Scholar
  4. 4.
    Moghbel A, Ghalambor A, Allipanah S. Wound healing and toxicity evaluation of aloe vera cream on outpatients with second degree burns. Iran J Pharm Sci. 2007;3:157–60.Google Scholar
  5. 5.
    Shukla A, Rasik AM, Jain GK, Shankar R, Kulshrestha DK, Dhawan BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol. 1999;65:1–11.CrossRefGoogle Scholar
  6. 6.
    Hosseini SN, Karimian A, Mousavinasab SN, Rahmanpour H, Yamini M, Zahmatkesh SH. Xenoderm versus 1% silver sulfadiazine in partial-thickness burns. Asian J Surg. 2009;32:234–9.CrossRefGoogle Scholar
  7. 7.
    Gomez R, Cancio L. Management of burn wounds in the emergency department. Emerg Med Clin N Am. 2007;25:135–46.CrossRefGoogle Scholar
  8. 8.
    Hosseini SV, Tanideh N, Kohanteb J, Ghodrati Z, Mehrabani D, Yarmohammadi H, et al. Int J Surg (London, England). 2007;5:23–6.CrossRefGoogle Scholar
  9. 9.
    Hussain S, Ferguson C. Best evidence topic report. Silver sulphadiazine cream in burns. Emerg Med J. 2006;23:929–32.CrossRefGoogle Scholar
  10. 10.
    Pollard S, Aye N, Symonds E. Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol. 1976;83:470–7.CrossRefGoogle Scholar
  11. 11.
    van Herendael B, Oberti C, Brosens I. Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol. 1978;131:872–80.CrossRefGoogle Scholar
  12. 12.
    Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant. 2014;4(2):111–21.CrossRefGoogle Scholar
  13. 13.
    Agarwal A, Shankar S, Singh G, Saxena P, Tahseen A. Pleiotropic properties of amniotic membrane for modulation of periodontal healing. Int J Dent Med Res. 2014;1:110–7.Google Scholar
  14. 14.
    Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26(2):300–11.CrossRefGoogle Scholar
  15. 15.
    Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30:2–10.CrossRefGoogle Scholar
  16. 16.
    Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105:215–28.CrossRefGoogle Scholar
  17. 17.
    Benirschke K, Kaufman P. Pathology of the human placenta. 5th ed. New York: Springer-Verlag; 2000.CrossRefGoogle Scholar
  18. 18.
    Bourne G. The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol. 1960;79:1070–3.CrossRefGoogle Scholar
  19. 19.
    Benedetto M, De Cicco F, Rossiello F, Nicosia A, Lupi G, Dell AS. Oxytocin receptor in human fetal membranes at term and during labor. J Steroid Biochem. 1990;35:205–8.CrossRefGoogle Scholar
  20. 20.
    Blackburn S. Maternal, Fetal and Neonatal Physiology: a clinical prospective, 5th edn. An imprint of Elsevier Science, Saunders, Australia; 2013.Google Scholar
  21. 21.
    King B. Related distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat Rec. 1985;212:57–62.CrossRefGoogle Scholar
  22. 22.
    Wolf H, Schmidt W, Drenckhahn D. Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res. 1991;266:385–9.CrossRefGoogle Scholar
  23. 23.
    Akashi T, Miyagi T, Ando N, Suzuki Y, Nemoto T, Eishi Y, et al. Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol. 1999;187:223–8.CrossRefGoogle Scholar
  24. 24.
    Cirman T, Beltram M, Schollmayer P, Rozman P, Kreft ME. Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank. 2014;15(2):177–92.CrossRefGoogle Scholar
  25. 25.
    Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.CrossRefGoogle Scholar
  26. 26.
    Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg. 1995;48(7):477–8.CrossRefGoogle Scholar
  27. 27.
    Halim AS, Khoo TL, Yussof SJM. Biologic and synthetic skin substitutes: an overview. Indian J PlastSurg. 2010;43(Suppl):S23–8.CrossRefGoogle Scholar
  28. 28.
    Trelford J, Trelford-Sauder M. The amnion in surgery, past and present. Am J ObstetGynecol. 1979;134(7):833–45.CrossRefGoogle Scholar
  29. 29.
    Matthews R, Faulk W, Bennett J. A review of the role of amniotic membranes in surgical practice. Obstet Gynecol Ann. 1982;11:31–58.Google Scholar
  30. 30.
    Rao TV, Chandrasekharam V. Use of dry human bovine amnion as a biological dressing. Arch Surg. 1981;116(7):891–6.CrossRefGoogle Scholar
  31. 31.
    Colocho G, Graham WP, Greene AE, Matheson DW, Lynch D. Human amniotic membrane as a physiologic wound dressing. Arch Surg. 1974;109(3):370–3.CrossRefGoogle Scholar
  32. 32.
    Talmi Y, Finkelstein Y, Zohar Y. Use of human amniotic membrane as a biologic dressing. Eur J PlastSurg. 1990;13(4):160–2.Google Scholar
  33. 33.
    Burleson R, Eiseman B. Nature of the bond between partial-thickness skin and wound granulations. Surgery. 1972;72(2):315–22.Google Scholar
  34. 34.
    Burleson R, Eiseman B. Mechanisms of antibacterial effect of biologic dressings. Ann Surg. 1973;177:181–6.CrossRefGoogle Scholar
  35. 35.
    Walker AB, Cooney DR, Allen JE. Use of fresh amnion as burn dressing. J PediatrSurg. 1977;12(3):391–5.Google Scholar
  36. 36.
    Singh R, Chacharkar M. Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability. 2011;20:49–54.CrossRefGoogle Scholar
  37. 37.
    Sharma SC, Bagree MM, Bhat AL, Banga BB, Singh MP. Amniotic membrane is an effective burn dressing material. Jpn J Surg. 1985;15:140–3.CrossRefGoogle Scholar
  38. 38.
    Ghalambor A, Pipilzadeh MH, Khodadadi A. The amniotic membrane: a suitable biological dressing to prevent infection in thermal burns. Med J Islam Acad Sci. 2000;13:115–8.Google Scholar
  39. 39.
    Robson M, Krizek T, Koss N, Samburg J. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet. 1973;136:904–6.Google Scholar
  40. 40.
    Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y. Antibacterial properties of human amniotic membranes. Placenta. 1991;12(3):285–8.CrossRefGoogle Scholar
  41. 41.
    King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28(2–3):161–9.CrossRefGoogle Scholar
  42. 42.
    Bose B. Burn wound dressing with human amniotic membrane. Ann R Coll Surg Engl. 1979;61(6):444–7.Google Scholar
  43. 43.
    Ravishanker R, Bath A, Roy R. Amnion Bank -the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns. 2003;29(4):369–74.CrossRefGoogle Scholar
  44. 44.
    Pigeon J. Treatment of second-degree burns with amniotic membranes. Can Med Assoc J. 1960;83:844–5.Google Scholar
  45. 45.
    Mohammadi AA, Sabet B, Riazi H. Human amniotic membrane dressing: an excellent method for outpatient management of burn wounds. Iran J Med Sci. 2009;34:61–4.Google Scholar
  46. 46.
    Mostaque A, Rahman K. Comparisons of the effects of biological membrane (amnion) and silver sulfadiazine in the management of burn wounds in children. J Burn Care Res. 2011;32:200–9.CrossRefGoogle Scholar
  47. 47.
    Fraser JF, Cuttle L, Kempf M, Phillips GE, Hayes MT, Kimble RM. A randomised controlled trial of amniotic membrane in the treatment of a standardised burn injury in the merino lamb. Burns. 2009;35(7):998–1003.CrossRefGoogle Scholar
  48. 48.
    Kirschbaum S, Hernandez H. Use of amnion in extensive burns. In: 3rd International Congress in Plastic Surgery. Excerpta Medica, Amsterdam; 1963.Google Scholar
  49. 49.
    Chopra A, Thomas BS. Amniotic membrane: a novel material for regeneration and repair. J BiomimBiomater Tissue Eng. 2013;18:106–13.Google Scholar
  50. 50.
    Mishra S, Singh S. Human amniotic membrane: can it be a ray of hope in periodontal regeneration? Indian J Res. 2014;3(9):118–21.Google Scholar
  51. 51.
    Bapat C, Kothary P. Preliminary report on acceleration of wound healing by amnion membrane graft. Indian J Med Res. 1974;62(9):1342–6.Google Scholar
  52. 52.
    Faulk WP, Matthews R, Stevens PJ, Bennet JP, Burgos H, Hsi BL. Human amnion as an adjunct in wound healing. Lancet. 1980;1(8179):1156–8.CrossRefGoogle Scholar
  53. 53.
    Burgos H, Sergeant R. Lyophilized human amniotic membranes used in reconstruction of the ear. J R Soc Med. 1983;76:433.CrossRefGoogle Scholar
  54. 54.
    Mamedov N, Gardner Z, Craker L. Medicinal plants of Russia and Central Asia used in the treatment of selected skin conditions. J Herbs Spices Med Plants. 2005;11:191–222.CrossRefGoogle Scholar
  55. 55.
    Cheng C, Koo M. Effects of Centella asiatica on ethanol induced gastric mucosal lesions in rats. Life Sci. 2000;67:2647–53.CrossRefGoogle Scholar
  56. 56.
    Shrestha P, Dhillion S. Medicinal plant diversity and use in the highlands of Dolakha district. Nepal J Ethnopharmacol. 2003;86:81–96.CrossRefGoogle Scholar
  57. 57.
    Somchit M, Sulaiman M, Zuraini A, Samsuddin L, Somchit N, Israf D, et al. Antinociceptive and anti-inflammatory effects of Centella asiatica. Indian J Pharmacol. 2004;36:377–80.Google Scholar
  58. 58.
    Maquart F, Chastang F, Simeon A, et al. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9:289–96.Google Scholar
  59. 59.
    Liu M, Dai Y, Li Y, Luo Y, Huang F, Gong Z, et al. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med. 2008;74:809–15.CrossRefGoogle Scholar
  60. 60.
    Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement Altern Med. 2012;12(1):103.CrossRefGoogle Scholar
  61. 61.
    Kosalwatna S, Shaipanich C, Bhanganada K. The effect of one percent Centella asiatica cream on chronic ulcers. Siriraj Hosp Gaz. 1988;40:455–60.Google Scholar
  62. 62.
    Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on Asiatic acid and its derivatives: a potential compound. SLAS Technol. 2018;23(2):111–27.Google Scholar
  63. 63.
    Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72(5):546–56.CrossRefGoogle Scholar
  64. 64.
    Abdulla MA, AL-Bayaty FH, Younis LT, Abu Hassan MI. Anti-ulcer activity of Centella asiatica leaf extract against ethanol-induced gastric mucosal injury in rats. 4(13):1253–1259. 4 July 2010.Google Scholar
  65. 65.
    Devkota A, Dall’Acqua S, Comai S, Innocenti G, Jha PK. Centella asiatica (L.) urban from Nepal: quali-quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochem Sys Ecol. 2010;38:12–22.CrossRefGoogle Scholar
  66. 66.
    Brinkhaus B, Lindner M, Schuppan D. Hahn EG chemical, pharmacological and clinical profile of the east Asian medical plant Centella Asiatica. Phytomedicine. 2000;7:427–48.CrossRefGoogle Scholar
  67. 67.
    Heidari M, Heidari-Vala H, Sadeghi M, Akhondi M. The inductive effects of Centella asiatica on rat spermatogenic cell apoptosis in vivo. J Nat Med. 2012;66:271–8.CrossRefGoogle Scholar
  68. 68.
    Coldren C, Hashim P, Ali J, Oh S, Sinskey A, Rha C. Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med. 2003;69:725–32.CrossRefGoogle Scholar
  69. 69.
    Jeong B. Structure-activity relationship study of Asiatic acid derivatives for new wound healing agent. Arch Pharm Res. 2006;29:556–62.CrossRefGoogle Scholar
  70. 70.
    Lu L, Ying K, Wei S, Liu Y, Lin H, Mao Y. Dermal fibroblast-associated gene induction by asiaticoside shown in vitro by DNA microarray analysis. Br J Dermatol. 2004;151:571–8.CrossRefGoogle Scholar
  71. 71.
    Lu L, Ying K, Wei S, Fang Y, Liu Y, Lin H, et al. Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Intern J Dermatol. 2004;43:801–7.CrossRefGoogle Scholar
  72. 72.
    Barnes J, Anderson LA, Philipson JD. Herbal medicines. 3rd ed. London: Pharmaceutical Press; 2007.Google Scholar
  73. 73.
    Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. Centella asiatica in cosmetology. Postep Derm Alergol. 2013;XXX(1):46–9.Google Scholar
  74. 74.
    Hamid IS, Widjaja NMR, Damayanti R. Anticancer activity of Centella asiatica leaves extract in benzo(a)pyrene-induced mice. Int J Pharmacogn Phytochem Res. 2016;8(1):80–4.Google Scholar
  75. 75.
    Chen Y, Han T, Qin L, Rui Y, Zheng H. Effect of total triterpenes from Centella asiatica on the depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai. 2003;26:870–3.Google Scholar
  76. 76.
    Chen Y, Han T, Rui Y, Yin M, Qin L, Zheng H. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai. 2005;28:492–6.Google Scholar
  77. 77.
    Basile A, Ferrara L, Del Pozzo M, Mele G, Sorbo S, Bassi P, et al. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana. Mart J Ethnopharmacol. 2005;102:32–6.CrossRefGoogle Scholar
  78. 78.
    Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Rad Biol Med. 1997;22:749–60.CrossRefGoogle Scholar
  79. 79.
    Sari DCR, Aswin S, Susilowati R, Ar-Rochmah M, Prakosa D, Romi M, et al. Ethanol extracts of Centella asiatica leaf improves memory performance in rats after chronic stress via reducing nitric oxide and increasing brain-derived neurotrophic factor (BDNF) concentration. GSTF Int J Psychol (JPsych). 2014;1(1):61–7.Google Scholar
  80. 80.
    Oyedeji OA, Afolayan AJ. Chemical composition and antibacterial activity of the essential oil of Centella asiatica. Growing in South Africa. Pharma Biol. 2005;43(3):249–52.CrossRefGoogle Scholar
  81. 81.
    Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed. 2005;22(2):165–70.Google Scholar
  82. 82.
    Pitinidhipat N. Antibacterial activity of Chrysanthemum indicum, Centella asiatica and Andrographis paniculata against Bacillus cereus and listeria monocytogenes under osmotic stress. AUJT. 2015;15(4):239–45.Google Scholar
  83. 83.
    Sekar T, Ayyanar M, Pillai YJ. Phytochemical screening and antibacterial activity of leaf and callus extracts of Centella asiatica. Bangladesh J Pharmacol. 2011;6(1):55–60.CrossRefGoogle Scholar
  84. 84.
    Dash BK, Faruquee HM, Biswas SK, Alam MK, Sisir SM, Prodhan UK. Antibacterial and antifungal activities of several extracts of Centella asiatica L against some human pathogenic microbes. Life Sci Med Res. 2011;2011:1–5.Google Scholar
  85. 85.
    Dhiman R, Aggarwal N, Aneja KR, Kaur M. In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int J Microbiol. 2016;2016:9015802.CrossRefGoogle Scholar
  86. 86.
    Idris NA, Nadzir MM. Antimicrobial activity of Centella asiatica on Aspergillus Niger and Bacillus subtilis. Chem Eng Trans. 2017;56:1381–6.Google Scholar
  87. 87.
    Sultan RA, Mahmood SB, Azhar I, Ahmed SW, Mahmood ZA. Biological activities assessment of Centella asiatica (Linn.). J Herbs Spices Med Plants. 2014;20(3):319–27.CrossRefGoogle Scholar
  88. 88.
    Kuo YS, Chien HF, Lu W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid-Based Compl Alt. 2012;2012:1–9.Google Scholar
  89. 89.
    Bonfill M, Mangas S, Cusido R, Osuna L, Pinol M, Palazon J. Identification of triterpenoid compounds of Centellaasiatica by thin-layer chromatography and mass spectrometry. Biomed Chromatogr. 2006;20:151–3.CrossRefGoogle Scholar
  90. 90.
    Islam MM, Hossain ML, Diba F, Hasan MZ, Juliana FM, Asaduzzaman SM. The combined effect of amniotic membrane and Moringa oleifera leaves derived gel for wound and burn healing in rat model. Regen Eng Transl Med. 2018;1(1):1–10.Google Scholar
  91. 91.
    Yifeng K, Yixiang W, Xuan C, Xun L, Min Y, Chunbo Y, et al. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoSONE. 2015;10(3):1–18.Google Scholar
  92. 92.
    Mayefis D. Burn wound healing activity of the combination of Centella asiatica extract and papaya latex on male white mice. Int J Res Pharm Pharm Sci. 2016;1(4):07–12.Google Scholar
  93. 93.
    Metcalf DG, Bowler PG. Biofilm delays wound healing: a review of the evidence. Burns Trauma. 2015;1:5–12.CrossRefGoogle Scholar
  94. 94.
    Rosen H, Blumenthal A, McCallum J. Effect of asiaticoside on wound healing in the rat. Proc Soc Exp Biol Med. 1967;125:279–80.CrossRefGoogle Scholar
  95. 95.
    Incandela L, Cesarone MR, Cacchio M, De Sanctis MT, Santavenere C, D’Auro MG, et al. Total triterpenic fraction of Centella asiatica in chronic venous insuffi ciency and in high-perfusion microangiopathy. Angiology. 2001;52:S9–13.CrossRefGoogle Scholar
  96. 96.
    Lee J, Jung E, Kim Y, Park J, Park J, Hong S, et al. Asiaticoside induced human collagen I synthesis through TGF-beta receptor I kinase (TbetaRI kinase) – independent smad signaling. Planta Med. 2006;72:324–8.CrossRefGoogle Scholar
  97. 97.
    Stephen-Haynes J, Gibson E, Greenwood M. Chitosan: a natural solution for wound healing. J Comm Nurs. 2014;28:48–53.Google Scholar
  98. 98.
    Jie J, Yang J, He H, Zheng J, Wang W, Zhang L, et al. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane. Sci Rep. 2018;8:6400.CrossRefGoogle Scholar
  99. 99.
    Alitalo K, Kurkinen M, Vaheri A. Extracellular matrix components synthesized by human amniotic epithelial cells in culture 1980;19:1053–1062.Google Scholar
  100. 100.
    Ramesh B, Chandrasekaran J, Jeevankumar S, Jacob G, Cherian KM. Hybrid amniotic membrane dressing with green silver nanoparticles as bioengineered skin for wounds and burns: a pilot studies. J Biotechnol Biomater. 2017;7:272.CrossRefGoogle Scholar
  101. 101.
    Patel NA, Patel M, Patel RP. Formulation and evaluation of Polyherbal gel for wound healing. Int Res J Pharm. 2011;1:1–6.Google Scholar
  102. 102.
    Prakash V, Jaiswal NI, Srivastava MR. A review on medicinal properties of Centella asiatica. Asian J Pharm Clin Res. 2017;10(10):69.CrossRefGoogle Scholar
  103. 103.
    Saeidinia A, Keihanian F, Lashkari A, Lahiji H, Studenta M, Mobayyen M, et al. Partial-thickness burn wounds healing by topical treatment: a randomized controlled comparison between silver sulfadiazine and centiderm. Medicine. 2017;96(9):61–8.CrossRefGoogle Scholar
  104. 104.
    Davis J. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med. 1910;15:307.Google Scholar
  105. 105.
    Stern M. The grafting of preserved amniotic membranes to burned and ulcerated surfaces, substituting skin grafts. JAMA. 1913;60:973.CrossRefGoogle Scholar
  106. 106.
    Sabella N. Use of the fetal membranes in skin grafting. Med Rec. 1913;83:478–80.Google Scholar
  107. 107.
    Wu F, Bian D, Xia Y, Gong Z, Tan Q, Chen J, et al. Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs. Evid-Based Compl Alt. 2012;2012:1–13.Google Scholar
  108. 108.
    Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2:18–28.Google Scholar
  109. 109.
    Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al. Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med. 2015;9:E252–66.CrossRefGoogle Scholar
  110. 110.
    Hou Q, Li M, Lu YH, Liu DH, Li CC. Burn wound healing properties of asiaticoside and madecassoside. Exp Ther Med. 2016;12(3):1269–74.CrossRefGoogle Scholar

Copyright information

© The Regenerative Engineering Society 2019

Authors and Affiliations

  • Md. Liakat Hossain
    • 1
  • Md. Arifur Rahman
    • 2
  • Ayesha Siddika
    • 1
  • M. H. Adnan
    • 1
  • Hafizur Rahman
    • 2
  • Farzana Diba
    • 1
  • Md. Zahid Hasan
    • 1
  • S. M. Asaduzzaman
    • 1
    Email author
  1. 1.Institute of Tissue Banking and Biomaterial ResearchAtomic Energy Research Establishment (AERE)SavarBangladesh
  2. 2.Department of Biochemistry & Molecular BiologyJahangirnagar UniversitySavarBangladesh

Personalised recommendations