Adhesion and Proliferation of Human Adipose-Derived Stem Cells on Titania Nanotube Surfaces
Abstract
When a biomaterial is implanted, the body reacts similar to an injury and stem cells are recruited to the implant site. Since, stem cells play an important role in tissue repair in the body, their interaction with biomaterials is critical for long-term success of medical devices. Surfaces with nanostructured features have been shown to alter cellular functionality in vitro and even improve fixation of the implant to the surrounding bone tissues in vivo. In this study, the effect of titania nanotube (NT) size and cell density on the adhesion and proliferation of human adipose-derived stem cells (ASCs) was evaluated. Although many studies have evaluated mesenchymal stem cells response on nanostructured surfaces, very few studies have explored the response of adipose-derived stem cells on titanium nanotube surfaces and none have explored the effect of cell density concurrent with nanotube size on ASC proliferation. Proliferation behavior of ASCs on NT surfaces and titanium control were investigated for a week using three different cell densities. The optimal cell density was 2500 cells/well and the smaller diameter NT exhibited higher ASC proliferation. This study confirms that NT surfaces promote ASC adhesion and proliferation. By more fully understanding the effect of nanostructure size on adhesion and proliferation of stem cells, implants could be specifically designed to achieve the optimal stem cell response from the tissue in which they are implanted. Additionally, the favorable response of ASC to these NT surfaces and determination of optimal cell density suggests a potential use in orthopedic tissue regeneration.
Lay Summary
When a biomaterial is implanted, the body reacts similar to an injury and stem cells are recruited to the implant site. Since, stem cells play an important role in tissue repair in the body, their interaction with biomaterials is critical for long-term success of medical devices. This study confirms that nanotube surfaces promote stem cell adhesion and proliferation.
Keywords
Adipose-derived stem cells Titania nanotubes Biomaterials Cell adhesion Cell proliferationNotes
Acknowledgements
The authors would like to acknowledge Dr. Patrick McCurdy and Dr. Roy Geiss for their assistance with SEM, Brian Newell for his assistance with XRD, and Dr. Kimberly Cox-York for isolating and donating the adipose-derived stem cells.
References
- 1.Krafts KP. The hidden drama tissue repair. Organogenesis. 2010;6:225–33. https://doi.org/10.4161/org6.4.12555.Google Scholar
- 2.Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci. 2000;97:3213–8. https://doi.org/10.1073/pnas.97.7.3213.Google Scholar
- 3.Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep. 2011;7:269–91. https://doi.org/10.1007/s12015-010-9193-7.Google Scholar
- 4.Zuk P. Adipose-derived stem cells in tissue regeneration: a review. Int Sch Res Not. 2013;2013:e713959. https://doi.org/10.1155/2013/713959.Google Scholar
- 5.Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2013;101 B:187–99. https://doi.org/10.1002/jbm.b.32817.Google Scholar
- 6.Tsuji W. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6:312–21. https://doi.org/10.4252/wjsc.v6.i3.312.Google Scholar
- 7.Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45:115–20. https://doi.org/10.1016/j.ymeth.2008.03.006.Google Scholar
- 8.Halvorsen YC, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, et al. Extracellular matrix mineralization and osteoblast. Tissue Eng. 2001;7:729–41.Google Scholar
- 9.Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience. 2018;12:1–14. https://doi.org/10.3332/ecancer.2018.822.Google Scholar
- 10.Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79:235–44. https://doi.org/10.1111/j.1445-2197.2009.04852.x.Google Scholar
- 11.Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74. https://doi.org/10.1159/000448180.Google Scholar
- 12.Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials. 1998;19:1621–39. https://doi.org/10.1016/S0142-9612(97)00146-4.Google Scholar
- 13.Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53. https://doi.org/10.1016/j.biomaterials.2008.04.023.Google Scholar
- 14.Banovetz JM, Sharp R, Probe RA, Anglen JO. Titanium plate fixation: a review of implant failures. J Orthop Trauma. 1996;10:389–94.Google Scholar
- 15.Berthet JP, Gomez Caro A, Solovei L, Gilbert M, Bommart S, Gaudard P, et al. Titanium implant failure after chest wall osteosynthesis. Ann Thorac Surg. 2015;99:1945–52. https://doi.org/10.1016/j.athoracsur.2015.02.040.Google Scholar
- 16.Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog Mater Sci. 2009;54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004.Google Scholar
- 17.Yaszemski MJ, Trantolo DJ, Lewandrowsk K-U, Hasirc V, Altobelli DE, Wise DL. Corrosion and biocompatibility of orthopedic implants. New York: Marcel Dekker, Inc.; 2004.Google Scholar
- 18.Newman P, Galenano-Ninõ JL, Graney P, Razal JM, Minett AI, Ribas J, et al. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Sci Rep. 2016;6:1–12. https://doi.org/10.1038/srep37909.Google Scholar
- 19.Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015;11:494–502. https://doi.org/10.1016/j.actbio.2014.10.017.Google Scholar
- 20.Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am. 1997;77:509–28. https://doi.org/10.1016/S0039-6109(05)70566-1.Google Scholar
- 21.Knabe C, Howlett CR, Klar F, Zreiqat H. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. J Biomed Mater Res A. 2004;71:98–107. https://doi.org/10.1002/jbm.a.30130.Google Scholar
- 22.Bosco R, Iafisco M, Tampieri A, Jansen JA, Leeuwenburgh SCG, Van Den Beucken JJJP. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl Surf Sci. 2015;328:516–24. https://doi.org/10.1016/j.apsusc.2014.12.072.Google Scholar
- 23.Alghamdi HS, Bosco R, van den Beucken JJJP, Walboomers XF, Jansen JA. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials. 2013;34:3747–57. https://doi.org/10.1016/j.biomaterials.2013.02.033.Google Scholar
- 24.Alghamdi HS, Bosco R, Both SK, Iafisco M, Leeuwenburgh SCG, Jansen JA, et al. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. Biomaterials. 2014;35:5482–90. https://doi.org/10.1016/j.biomaterials.2014.03.069.Google Scholar
- 25.Kokkonen H, Niiranen H, Schols HA, Morra M, Stenbäck F, Tuukkanen J. Pectin-coated titanium implants are well-tolerated in vivo. J Biomed Mater Res A. 2010;93:1404–9. https://doi.org/10.1002/jbm.a.32649.Google Scholar
- 26.Prakash C, Uddin MS. Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol. 2017;326:134–45. https://doi.org/10.1016/j.surfcoat.2017.07.040.Google Scholar
- 27.Aparicio C, Padrós A, Gil FJ. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. J Mech Behav Biomed Mater. 2011;4:1672–82. https://doi.org/10.1016/j.jmbbm.2011.05.005.Google Scholar
- 28.Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am. 2008;90:2485–98. https://doi.org/10.2106/JBJS.G.00499.Google Scholar
- 29.Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed Res Int. 2015;2015:1–11. https://doi.org/10.1155/2015/791725.Google Scholar
- 30.Simmons CA, Valiquette N, Pilliar R. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: an animal model study of early postimplanation healing response and mechanical stability. J Biomed Mater Res. 1999;47:127–38.Google Scholar
- 31.Ban S, Iwaya Y, Kono H, Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dent Mater. 2006;22:1115–20. https://doi.org/10.1016/j.dental.2005.09.007.Google Scholar
- 32.Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25. https://doi.org/10.1016/S1369-7021(08)70086-5.Google Scholar
- 33.Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology - from micron- to nanotopography. Biomaterials. 2008;29:3822–35. https://doi.org/10.1016/j.biomaterials.2008.05.012.Google Scholar
- 34.Kulkarni M, Mazare A, Schmuki P, Iglič A. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 2014:111–36.Google Scholar
- 35.Tan AW, Tay L. Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO 2 nanofibrous surfaces. Int J Nanomedicine. 2014;9:5389–401. https://doi.org/10.2147/IJN.S72659.Google Scholar
- 36.Wang X, Zhu J, Yin L, Liu S, Zhang X, Ao Y, et al. Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties. J Biomed Mater Res A. 2012;100 A:3511–7. https://doi.org/10.1002/jbm.a.34293.Google Scholar
- 37.Malec K, Goralska J, Hubalewska-Mazgaj M, Glowacz P, Jarosz M, Brzewski P, et al. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. Int J Nanomedicine. 2016;11:5349–60. https://doi.org/10.2147/IJN.S116263.Google Scholar
- 38.Yu D, Song Y, Zhu X, Yang R, Han A. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure. Appl Surf Sci. 2013;276:711–6. https://doi.org/10.1016/j.apsusc.2013.03.158.Google Scholar
- 39.Wang Y, Wen C, Hodgson P, Li Y. Biocompatibility of TiO2 nanotubes with different topographies. J Biomed Mater Res A. 2014;102:743–51. https://doi.org/10.1002/jbm.a.34738.Google Scholar
- 40.Kulkarni M, Flašker A, Lokar M, Mrak-Poljšak K, Mazare A, Artenjak A, et al. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine. 2015;10:1359–73. https://doi.org/10.2147/IJN.S77492.Google Scholar
- 41.Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39:193–205.Google Scholar
- 42.Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28:4880–8. https://doi.org/10.1016/j.biomaterials.2007.07.037.Google Scholar
- 43.Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103. https://doi.org/10.1002/jbm.a.Google Scholar
- 44.An S-H, Narayanan R, Matsumoto T, Lee H-J, Kwon T-Y, Kim K-H. Crystallinity of anodic TiO2 nanotubes and bioactivity. J Nanosci Nanotechnol. 2011;11:4910–8.Google Scholar
- 45.Ge R, Fu W, Yang H, Zhang Y, Zhao W, Liu Z, et al. Fabrication and characterization of highly-ordered titania nanotubes via electrochemical anodization. Mater Lett. 2008;62:2688–91. https://doi.org/10.1016/j.matlet.2008.01.015.Google Scholar
- 46.Kulkarni M, Mazare a GE, Perutkova Š, Kralj-Iglič V, Milošev I, Schmuki P, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26:062002. https://doi.org/10.1088/0957-4484/26/6/062002.Google Scholar
- 47.Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. J Biomed Mater Res A. 2010;95 A:350–60. https://doi.org/10.1002/jbm.a.32853.Google Scholar
- 48.Cox-York KA, Erickson CB, Pereira RI, Bessesen DH, Van Pelt RE. Region-specific effects of oestradiol on adipose-derived stem cell differentiation in post-menopausal women. J Cell Mol Med. 2017;21:677–84. https://doi.org/10.1111/jcmm.13011.Google Scholar
- 49.Trujillo N, Popat K. Increased adipogenic and decreased chondrogenic differentiation of adipose derived stem cells on nanowire surfaces. Materials (Basel). 2014;7:2605–30. https://doi.org/10.3390/ma7042605.Google Scholar
- 50.Frandsen CJ, Brammer KS, Jin S. Variations to the nanotube surface for bone regeneration. Int J Biomater. 2013;2013:1–10. https://doi.org/10.1155/2013/513680.Google Scholar
- 51.Boyan BD, Lohmann CH, Dean DD, Sylvia VL, Cochran DL, Schwartz Z. Mechanisms involved in osteoblast response to implant surface morphology. Annu Rev Mater Res. 2001;31:357–71.Google Scholar
- 52.Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. https://www.intechopen.com/books/regenerativemedicine-and-tissue-engineering-cells-and-biomaterials/cell-responses-to-surface-and-architecture-oftissue-engineering-scaffolds.
- 53.Macak JM, Tsuchiya H, Ghicov a, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18. https://doi.org/10.1016/j.cossms.2007.08.004.Google Scholar
- 54.Wang Y, Yu D-L, Chong B, Li D-D, Song Y, Zhang S-Y, et al. Simulation and separation of anodizing current-time curves, morphology evolution of TiO2 nanotubes anodized at various temperatures. J Electrochem Soc. 2014;161:H891–5. https://doi.org/10.1149/2.0411414jes.Google Scholar
- 55.Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed. 2011;50:2904–39. https://doi.org/10.1002/anie.201001374.Google Scholar
- 56.Hamlekhan A, Butt A, Patel S, Royhman D, Takoudis C, Sukotjo C, et al. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PLoS One. 2014;9:e96213. https://doi.org/10.1371/journal.pone.0096213.Google Scholar
- 57.Yang Y, Cavin R, Ong JL. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J Biomed Mater Res. 2003;67A:344–9. https://doi.org/10.1002/jbm.a.10578.Google Scholar
- 58.Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: a review. Dent Mater. 2017;34:1–18. https://doi.org/10.1016/j.dental.2017.09.007.Google Scholar
- 59.Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells. 2006;90:2011–75. https://doi.org/10.1016/j.solmat.2006.04.007.Google Scholar
- 60.Kar P. Effect of anodization voltage on the formation of phase pure anatase nanotubes with doped carbon. Inorg Mater. 2010;46:377–82. https://doi.org/10.1134/S0020168510040102.Google Scholar
- 61.Su Z, Zhang L, Jiang F, Hong M. Formation of crystalline TiO2 by anodic oxidation of titanium. Prog Nat Sci Mater Int. 2013;23:294–301. https://doi.org/10.1016/j.pnsc.2013.04.004.Google Scholar
- 62.Mazare A, Dilea M, Ionita D, Titorencu I, Trusca V, Vasile E. Changing bioperformance of TiO 2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry. 2012;87:124–31. https://doi.org/10.1016/j.bioelechem.2012.01.002.Google Scholar
- 63.Brammer KS, Oh S, Cobb CJ, Bjursten LM, Van Der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–23. https://doi.org/10.1016/j.actbio.2009.05.008.Google Scholar
- 64.He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med. 2008;19:3465–72. https://doi.org/10.1007/s10856-008-3505-3.Google Scholar
- 65.Albu SP, Schmuki P. TiO2 nanotubes grown in different organic electrolytes: two-size self-organization, single vs. double-walled tubes, and giant diameters. Phys Status Solidi Rapid Res Lett. 2010;4:215–7. https://doi.org/10.1002/pssr.201004244.Google Scholar
- 66.Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z, Surface functionalization of tio 2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12(4):1097–105.Google Scholar
- 67.Albu SP, Kim D, Schmuki P. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed. 2008;47:1916–9. https://doi.org/10.1002/anie.200704144.Google Scholar
- 68.Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact. 2010;188:319–33. https://doi.org/10.1016/j.cbi.2010.07.011.Google Scholar
- 69.Khokher MA, Dandona P. Fluoride stimulates [3H] thymidine incorporation and alkaline phosphatase production by human osteoblasts. Metabolism. 1990;39:1118–21. https://doi.org/10.1016/0026-0495(90)90081-M.Google Scholar
- 70.Qu WJ, Zhong DB, Wu PF, Wang JF, Han B. Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab. 2008;26:328–34. https://doi.org/10.1007/s00774-007-0832-2.Google Scholar
- 71.Liu HY, Wang XJ, Wang LP, Lei FY, Wang XF, Ai HJ. Effect of fluoride-ion implantation on the biocompatibility of titanium for dental applications. Appl Surf Sci. 2008;254:6305–12. https://doi.org/10.1016/j.apsusc.2008.03.075.Google Scholar
- 72.Ellingsen JE. Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med. 1995;6:749–53. https://doi.org/10.1007/BF00134312.Google Scholar
- 73.Yang CY, Huang LY, Shen TL, Andrew Yeh J. Cell adhesion, morphology and biochemistry on nanotopographic oxidized silicon surfaces. Eur Cells Mater. 2010;20:415–30. https://doi.org/10.22203/eCM.v020a34.Google Scholar
- 74.Papenburg BJ, Rodrigues ED, Wessling M, Stamatialis D. Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter. 2010;6:4377. https://doi.org/10.1039/b927207k.Google Scholar
- 75.Abagnale G, Sechi A, Steger M, Zhou Q, Kuo CC, Aydin G, et al. Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep. 2017;9:654–66. https://doi.org/10.1016/j.stemcr.2017.06.016.Google Scholar