Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives

  • Ibrahim Fatih Cengiz
  • Hélder Pereira
  • Joao Espregueira-Mendes
  • Joaquim Miguel Oliveira
  • Rui L. Reis


The present preference in the clinical management of meniscus lesions is to preserve it by repairing whenever possible or substituting the tissue. Still, meniscectomy continues to be one of the most frequent orthopedic procedures regardless of the fact that it may lead to a series of early degenerative events in the knee. Surgical and technological advances enabled to extend the indications for meniscus repair. The outcome of meniscus repair is influenced by several factors. Classification of meniscus lesions remains a challenge while there have been some attempts in building consensus around it. Substitution of meniscus tissue has been performed to avoid or minimize the possible degenerative effects occurring in the absence of meniscus. Meniscus allograft transplantation has demonstrated its use as a replacement strategy of large lesions. In partial lesions, the use of acellular scaffolds has provided an improved clinical outcome when the insertional horns and the peripheral rim are preserved. However, the current scaffolds have shown some limitations, and the neotissue is different from the native meniscus. Tissue engineers thus envision going beyond the partial meniscus regeneration. Nowadays, it is aimed to develop a new generation of meniscal implants for total meniscus regeneration, which not only meet the biomechanical requirements but also the biological requirements both in the short- and long-term. Moreover, these might be patient/injury-specific regarding the size and shape as well as being cultivated with autologous cells and biologically enhanced. Herein, the clinical management of meniscus lesions and advanced tissue engineering strategies are reviewed.

Lay Summary

Meniscus injuries are the most frequent injuries in the knee. Given the increased understanding of the consequences of meniscectomy, which is still one of the most frequent orthopedic procedures, the clinical management of meniscus changed towards favoring repair or substitution. The future of meniscus substitution and regeneration is strongly supported by the clinical need. This study reviews the current concepts and provides future perspectives on the clinical management of meniscus lesions, and tissue engineering and regenerative medicine strategies to update and guide researchers and surgeons.


Meniscus,  Meniscus repair,  Meniscus lesion,  Meniscus tear,  Scaffold,  Tissue engineering 



This article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). I. F. Cengiz thanks the Portuguese Foundation for Science and Technology (FCT) for the Ph.D. scholarship (SFRH/BD/99555/2014). J. M. Oliveira also thanks the FCT for the funds provided under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–76.CrossRefGoogle Scholar
  2. 2.
    Brindle T, Nyland J, Johnson DL. The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train. 2001;36(2):160.Google Scholar
  3. 3.
    Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Basics of the meniscus. Regenerative strategies for the treatment of knee joint disabilities. USA: Springer; 2017. p. 237–47.CrossRefGoogle Scholar
  4. 4.
    Pereira H, Cengiz IF, Silva-Correia J, Cucciarini M, Gelber PE, Espregueira-Mendes J et al. Histology-ultrastructure-biology. In: Hulet C, Pereira H, Peretti G, Denti M, editors. Surgery of the meniscus. Berlin, Heidelberg: Springer Berlin Heidelberg 2016. p. 23-33.Google Scholar
  5. 5.
    Mcdevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;252:8–18.Google Scholar
  6. 6.
    Tudor F, McDermott ID, Myers P. Meniscal repair: a review of current practice. Orthopaedics and Trauma. 2014;28(2):88–96.CrossRefGoogle Scholar
  7. 7.
    Sanchez-Adams J, Athanasiou KA. The knee meniscus: a complex tissue of diverse cells. Cell Mol Bioeng. 2009;2(3):332–40.CrossRefGoogle Scholar
  8. 8.
    Verdonk PC, Forsyth R, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548–60.CrossRefGoogle Scholar
  9. 9.
    Pereira H, Caridade SG, Frias AM, Silva-Correia J, Pereira DR, Cengiz IF, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2014;22(9):1271–81.CrossRefGoogle Scholar
  10. 10.
    Cengiz IF, Pereira H, Pêgo JM, Sousa N, Espregueira-Mendes J, Oliveira JM et al. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. Journal of Tissue Engineering and Regenerative Medicine. 2015.Google Scholar
  11. 11.
    Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.CrossRefGoogle Scholar
  12. 12.
    Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.CrossRefGoogle Scholar
  13. 13.
    Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM. Meniscus repair and regeneration: review on current methods and research potential. European cells & materials. 2013;26:150–70.CrossRefGoogle Scholar
  14. 14.
    Clayton RAE, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury. 2008;39(12):1338–44.CrossRefGoogle Scholar
  15. 15.
    Bernstein J. Meniscal tears. Clin Orthop Relat Res. 2010;468(4):1190–2.CrossRefGoogle Scholar
  16. 16.
    Ciccotti MG, Shields CLJ, El Attrache NS. Meniscectomy. In: Fu FH, Harner CD, Vince KG, editors. Knee surgery. Philadelphia: Williams & Wilkins; 1994. p. 591–613 .In briefGoogle Scholar
  17. 17.
    Allen PR, Denham RA, Swan AV. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. Journal of Bone & Joint Surgery, British Volume. 1984;66(5):666–71.Google Scholar
  18. 18.
    Fairbank TJ. Knee joint changes after meniscectomy. Journal of Bone & Joint Surgery, British Volume. 1948;30(4):664–70.Google Scholar
  19. 19.
    Jackson JP. Degenerative changes in the knee after meniscectomy. Br Med J. 1968;2(5604):525.CrossRefGoogle Scholar
  20. 20.
    McDermott ID, Amis AA. The consequences of meniscectomy. Journal of Bone & Joint Surgery, British Volume. 2006;88(12):1549–56.CrossRefGoogle Scholar
  21. 21.
    Mordecai SC, Al-Hadithy N, Ware HE, Gupte CM. Treatment of meniscal tears: an evidence based approach. World journal of orthopedics. 2014;5(3):233.CrossRefGoogle Scholar
  22. 22.
    Verdonk R. The meniscus: past, present and future. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):145–6.CrossRefGoogle Scholar
  23. 23.
    Beaufils P, Verdonk R. The meniscus. Berlin Heidelberg: Springer-Verlag; 2010.CrossRefGoogle Scholar
  24. 24.
    Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(9):1275–88.CrossRefGoogle Scholar
  25. 25.
    Pereira H, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The meniscus: basic science. In: Verdonk R, Espregueira-Mendes J, Monllau JC, editors. Meniscal transplantation. Heidelberg, New York, Dordrecht, London: Springer; 2013. p. 7–14.CrossRefGoogle Scholar
  26. 26.
    Fayard JM, Pereira H, Servien E, Lustig S, Neyret P. Meniscectomy global results-complications. The meniscus. Berlin Heidelberg: Springer-Verlag; 2010.Google Scholar
  27. 27.
    Pereira H, Cengiz IF, Silva-Correia J, Ripoll PL, Varatojo R, Oliveira JM, et al. Meniscal repair: indications, techniques, and outcome. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, editors. Arthroscopy: basic to advanced. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 125–42.Google Scholar
  28. 28.
    Salata MJ, Gibbs AE, Sekiya JK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. 2010;38(9):1907–16.CrossRefGoogle Scholar
  29. 29.
    McDermott ID, Masouros SD, Amis AA. Biomechanics of the menisci of the knee. Curr Orthop. 2008;22:193–201.CrossRefGoogle Scholar
  30. 30.
    Walker PS, Hajek JV. The load-bearing area in the knee joint. J Biomech. 1972;5(6):581–9.CrossRefGoogle Scholar
  31. 31.
    Bourne RB, Finlay JB, Papadopoulos P, Andreae P. The effect of medial meniscectomy on strain distribution in the proximal part of the tibia. J Bone Joint Surg Am. 1984;66(9):1431–7.CrossRefGoogle Scholar
  32. 32.
    Smigielski R, Becker R, Zdanowicz U, Ciszek B. Medial meniscus anatomy-from basic science to treatment. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):8–14.CrossRefGoogle Scholar
  33. 33.
    Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced regenerative strategies for human knee meniscus. Regenerative strategies for the treatment of knee joint disabilities: Springer; 2017. p. 271–85.Google Scholar
  34. 34.
    Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. Human meniscus: from biology to tissue engineering strategies. Sports injuries. USA: Springer; 2015. p. 1089–102.Google Scholar
  35. 35.
    Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, et al. Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol. 2013;108:1–33.CrossRefGoogle Scholar
  36. 36.
    Beaufils P, Englund M, Järvinen TLN, Pereira H, Pujol N. How to share guidelines in daily practice on meniscus repair, degenerate meniscal lesion, and meniscectomy. In: Zaffagnini S, Becker R, GMMJ K, Espregueira-Mendes J, van Dijk CN, editors. ESSKA instructional course lecture book Amsterdam 2014. Amsterdam: Springer; 2014. p. 97–112.CrossRefGoogle Scholar
  37. 37.
    Getgood A, LaPrade RF, Verdonk P, Gersoff W, Cole B, Spalding T, et al. International meniscus reconstruction experts forum (IMREF) consensus statement on the practice of meniscal allograft transplantation. Am J Sports Med. 2015;2016 0363546516660064Google Scholar
  38. 38.
    ESSKA Meniscus Consensus Project, 2016, available on, last accessed on 17.11.2016. .
  39. 39.
    Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2012;20(5):422–9.CrossRefGoogle Scholar
  40. 40.
    Abraham AC, Edwards CR, Odegard GM, Donahue TL. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J Mech Behav Biomed Mater. 2011;4(8):2024–30.CrossRefGoogle Scholar
  41. 41.
    Guo H, Maher SA, Spilker RL. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method. Med Eng Phys. 2013;35(9):1313–20.CrossRefGoogle Scholar
  42. 42.
    Noble J, Hamblen DL. The pathology of the degenerate meniscus lesion. The Journal of bone and joint surgery British volume. 1975;57(2):180–6.Google Scholar
  43. 43.
    Sweigart MA, Athanasiou KA. Toward tissue engineering of the knee meniscus. Tissue Eng. 2001;7(2):111–29.CrossRefGoogle Scholar
  44. 44.
    Denti M, Espregueira-Mendes J, Pereira H, Raoulis V, Hantes M. Traumatic meniscal lesions, Surgery of the Meniscus. Amsterdam: Springer; 2016. p. 67–78.Google Scholar
  45. 45.
    Poehling GG, Ruch DS, Chabon SJ. The landscape of meniscal injuries. Clin Sports Med. 1990;9(3):539–49.Google Scholar
  46. 46.
    Ruiz-Iban MA, Diaz-Heredia J, Elias-Martin E, Moros-Marco S, Cebreiro Martinez Del Val I. Repair of meniscal tears associated with tibial plateau fractures: a review of 15 cases. Am J Sports Med. 2012;40(10):2289–95.CrossRefGoogle Scholar
  47. 47.
    Anderson AF, Irrgang JJ, Dunn W, Beaufils P, Cohen M, Cole BJ, et al. Interobserver reliability of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS) classification of meniscal tears. Am J Sports Med. 2011;39(5):926–32.CrossRefGoogle Scholar
  48. 48.
    Smillie IS. The current pattern of the pathology of meniscus tears. Proceedings of the Royal Society of Medicine. 1968;61(1):44–5.Google Scholar
  49. 49.
    Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2005;21(11):1366–9.CrossRefGoogle Scholar
  50. 50.
    Yim JH, Seon JK, Song EK, Choi JI, Kim MC, Lee KB, et al. A comparative study of meniscectomy and nonoperative treatment for degenerative horizontal tears of the medial meniscus. Am J Sports Med. 2013;41(7):1565–70.CrossRefGoogle Scholar
  51. 51.
    Bhatia S, LaPrade CM, Ellman MB, LaPrade RF. Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med. 2014;42(12):3016–30.CrossRefGoogle Scholar
  52. 52.
    Koenig JH, Ranawat AS, Umans HR, Difelice GS. Meniscal root tears: diagnosis and treatment. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2009;25(9):1025–32.CrossRefGoogle Scholar
  53. 53.
    Koo JH, Choi S-H, Lee SA, Wang JH. Comparison of medial and lateral meniscus root tears. PLoS One. 2015;10(10):e0141021.CrossRefGoogle Scholar
  54. 54.
    LaPrade CM, Foad A, Smith SD, Turnbull TL, Dornan GJ, Engebretsen L, et al. Biomechanical consequences of a nonanatomic posterior medial meniscal root repair. Am J Sports Med. 2015;43(4):912–20.CrossRefGoogle Scholar
  55. 55.
    Poulsen MR, Johnson DL. Meniscal injuries in the young, athletically active patient. Phys Sportsmed. 2011;39(1):123–30.CrossRefGoogle Scholar
  56. 56.
    Baker P, Coggon D, Reading I, Barrett D, McLaren M, Cooper C. Sports injury, occupational physical activity, joint laxity, and meniscal damage. J Rheumatol. 2002;29(3):557–63.Google Scholar
  57. 57.
    Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008;359(11):1108–15.CrossRefGoogle Scholar
  58. 58.
    Englund M, Niu J, Guermazi A, Roemer FW, Hunter DJ, Lynch JA, et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 2007;56(12):4048–54.CrossRefGoogle Scholar
  59. 59.
    Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239(3):811–7.CrossRefGoogle Scholar
  60. 60.
    Howell R, Kumar NS, Patel N, Tom J. Degenerative meniscus: pathogenesis, diagnosis, and treatment options. World J Orthop. 2014;5(5):597–602.CrossRefGoogle Scholar
  61. 61.
    Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am. 2009;47(4):703–12.CrossRefGoogle Scholar
  62. 62.
    Smith BE, Thacker D, Crewesmith A, Hall M. Special tests for assessing meniscal tears within the knee: a systematic review and meta-analysis. Evidence-based medicine. 2015;20(3):88–97.CrossRefGoogle Scholar
  63. 63.
    Van Dyck P, Vanhoenacker FM, Lambrecht V, Wouters K, Gielen JL, Dossche L, et al. Prospective comparison of 1.5 and 3.0-T MRI for evaluating the knee menisci and ACL. J Bone Joint Surg Am. 2013;95(10):916–24.CrossRefGoogle Scholar
  64. 64.
    Beaufils P, Hulet C, Dhenain M, Nizard R, Nourissat G, Pujol N. Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthopaedics & traumatology, surgery & research : OTSR. 2009;95(6):437–42.CrossRefGoogle Scholar
  65. 65.
    Nam TS, Kim MK, Ahn JH. Efficacy of magnetic resonance imaging evaluation for meniscal tear in acute anterior cruciate ligament injuries. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2014;30(4):475–82.CrossRefGoogle Scholar
  66. 66.
    Ben-Galim P, Steinberg EL, Amir H, Ash N, Dekel S, Arbel R. Accuracy of magnetic resonance imaging of the knee and unjustified surgery. Clin Orthop Relat Res. 2006;447:100–4.CrossRefGoogle Scholar
  67. 67.
    Rossbach BP, Pietschmann MF, Gulecyuz MF, Niethammer TR, Ficklscherer A, Wild S, et al. Indications requiring preoperative magnetic resonance imaging before knee arthroscopy. Archives of medical science : AMS. 2014;10(6):1147–52.CrossRefGoogle Scholar
  68. 68.
    Cooper DE, Arnoczky SP, Warren RF. Meniscal repair. Clin Sports Med. 1991;10(3):529–48.Google Scholar
  69. 69.
    Anderson L, Watts M, Shapter O, Logan M, Risebury M, Duffy D, et al. Repair of radial tears and posterior horn detachments of the lateral meniscus: minimum 2-year follow-up. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2010;26(12):1625–32.CrossRefGoogle Scholar
  70. 70.
    Hulet CH, Locker BG, Schiltz D, Texier A, Tallier E, Vielpeau CH. Arthroscopic medial meniscectomy on stable knees. The Journal of bone and joint surgery British volume. 2001;83(1):29–32.CrossRefGoogle Scholar
  71. 71.
    Pujol N, Tardy N, Boisrenoult P, Beaufils P. Long-term outcomes of all-inside meniscal repair. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):219–24.CrossRefGoogle Scholar
  72. 72.
    Lyman S, Hidaka C, Valdez AS, Hetsroni I, Pan TJ, Do H, et al. Risk factors for meniscectomy after meniscal repair. Am J Sports Med. 2013;41(12):2772–8.CrossRefGoogle Scholar
  73. 73.
    Pujol N, Beaufils P. Healing results of meniscal tears left in situ during anterior cruciate ligament reconstruction: a review of clinical studies. Knee Surg Sports Traumatol Arthrosc. 2009;17(4):396–401.CrossRefGoogle Scholar
  74. 74.
    Snoeker BA, Bakker EW, Kegel CA, Lucas C. Risk factors for meniscal tears: a systematic review including meta-analysis. The Journal of orthopaedic and sports physical therapy. 2013;43(6):352–67.CrossRefGoogle Scholar
  75. 75.
    Kartus JT, Russell VJ, Salmon LJ, Magnusson LC, Brandsson S, Pehrsson NG, et al. Concomitant partial meniscectomy worsens outcome after arthroscopic anterior cruciate ligament reconstruction. Acta Orthop Scand. 2002;73(2):179–85.CrossRefGoogle Scholar
  76. 76.
    Brophy RH, Gill CS, Lyman S, Barnes RP, Rodeo SA, Warren RF. Effect of anterior cruciate ligament reconstruction and meniscectomy on length of career in National Football League athletes: a case control study. Am J Sports Med. 2009;37(11):2102–7.CrossRefGoogle Scholar
  77. 77.
    Mariani PP, Garofalo R, Margheritini F. Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc. 2008;16(6):574–80.CrossRefGoogle Scholar
  78. 78.
    Sonnery-Cottet B, Archbold P, Thaunat M, Carnesecchi O, Tostes M, Chambat P. Rapid chondrolysis of the knee after partial lateral meniscectomy in professional athletes. Knee. 2014;21(2):504–8.CrossRefGoogle Scholar
  79. 79.
    El Ghazaly SA, Rahman AA, Yusry AH, Fathalla MM. Arthroscopic partial meniscectomy is superior to physical rehabilitation in the management of symptomatic unstable meniscal tears. Int Orthop. 2015;39(4):769–75.CrossRefGoogle Scholar
  80. 80.
    Chang JH, Shen HC, Huang GS, Pan RY, Wu CF, Lee CH, et al. A biomechanical comparison of all-inside meniscus repair techniques. J Surg Res. 2009;155(1):82–8.CrossRefGoogle Scholar
  81. 81.
    Chang HC, Caborn DN, Nyland J, Burden R. Effect of lesion location on fixation strength of the meniscal viper repair system: an in vitro study using porcine menisci. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2006;22(4):394–9.CrossRefGoogle Scholar
  82. 82.
    Henning CE. Arthroscopic repair of meniscus tears. Orthopedics. 1983;6(9):1130–2.Google Scholar
  83. 83.
    Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res. 1990;252:64–72.Google Scholar
  84. 84.
    Warren RF. Arthroscopic meniscus repair. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1985;1(3):170–2.CrossRefGoogle Scholar
  85. 85.
    Morgan CD, Casscells SW. Arthroscopic meniscus repair: a safe approach to the posterior horns. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1986;2(1):3–12.CrossRefGoogle Scholar
  86. 86.
    Tsai AM, McAllister DR, Chow S, Young CR, Hame SL. Results of meniscal repair using a bioabsorbable screw. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(6):586–90.CrossRefGoogle Scholar
  87. 87.
    Albrecht-Olsen P, Kristensen G, Burgaard P, Joergensen U, Toerholm C. The arrow versus horizontal suture in arthroscopic meniscus repair. A prospective randomized study with arthroscopic evaluation. Knee Surg Sports Traumatol Arthrosc. 1999;7(5):268–73.CrossRefGoogle Scholar
  88. 88.
    Petsche TS, Selesnick H, Rochman A. Arthroscopic meniscus repair with bioabsorbable arrows. Arthroscopy : the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2002;18(3):246–53.CrossRefGoogle Scholar
  89. 89.
    Gifstad T, Grontvedt T, Drogset JO. Meniscal repair with biofix arrows: results after 4.7 years’ follow-up. Am J Sports Med. 2007;35(1):71–4.CrossRefGoogle Scholar
  90. 90.
    Kurzweil PR, Tifford CD, Ignacio EM. Unsatisfactory clinical results of meniscal repair using the meniscus arrow. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2005;21(8):905.CrossRefGoogle Scholar
  91. 91.
    Farng E, Sherman O. Meniscal repair devices: a clinical and biomechanical literature review. Arthroscopy : the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(3):273–86.CrossRefGoogle Scholar
  92. 92.
    Miller MD, Kline AJ, Gonzales J, Beach WR. Pitfalls associated with FasT-Fix meniscal repair. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2002;18(8):939–43.CrossRefGoogle Scholar
  93. 93.
    Seil R, Rupp S, Kohn DM. Cyclic testing of meniscal sutures. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2000;16(5):505–10.CrossRefGoogle Scholar
  94. 94.
    Frizziero A, Ferrari R, Giannotti E, Ferroni C, Poli P, Masiero S. The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures. Muscles, ligaments and tendons journal. 2012;2(4):295–301.Google Scholar
  95. 95.
    Kamimura T, Kimura M. Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthop J Sports Med. 2014;2(11)Google Scholar
  96. 96.
    Ahn JH, Wang JH, Yoo JC. Arthroscopic all-inside suture repair of medial meniscus lesion in anterior cruciate ligament deficient knees: results of second-look arthroscopies in 39 cases. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(9):936–45.CrossRefGoogle Scholar
  97. 97.
    Osti L, Del Buono A, Maffulli N. Anterior medial meniscal root tears: a novel arthroscopic all inside repair. Translational medicine @ UniSa. 2015;12:41–6.Google Scholar
  98. 98.
    Pujol N, Barbier O, Boisrenoult P, Beaufils P. Amount of meniscal resection after failed meniscal repair. Am J Sports Med. 2011;39(8):1648–52.CrossRefGoogle Scholar
  99. 99.
    Pujol N, Bohu Y, Boisrenoult P, Macdes A, Beaufils P. Clinical outcomes of open meniscal repair of horizontal meniscal tears in young patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1530–3.CrossRefGoogle Scholar
  100. 100.
    Katabi N, Pujol N, Boisrenoult P. Meniscal repair: intra- and postoperative complications. In: Beaufils P, Verdonk R, editors. The meniscus. Berlin-Heidelberg: Springer-Verlag; 2010. p. 191–8.CrossRefGoogle Scholar
  101. 101.
    Lozano J, Ma CB, Cannon WD. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res. 2007;455:134–41.CrossRefGoogle Scholar
  102. 102.
    Barrett GR, Field MH, Treacy SH, Ruff CG. Clinical results of meniscus repair in patients 40 years and older. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1998;14(8):824–9.CrossRefGoogle Scholar
  103. 103.
    Chalmers PN, Karas V, Sherman SL, Cole BJ. Return to high-level sport after meniscal allograft transplantation. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2013;29(3):539–44.CrossRefGoogle Scholar
  104. 104.
    Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):147–57.CrossRefGoogle Scholar
  105. 105.
    Marcacci M, Zaffagnini S, Grassi A, Muccioli GM, Bonanzinga T, Neri M, et al. Meniscal allograft transplantation. Techniques in cartilage repair surgery. Amsterdam: Springer; 2014. p. 305–23.CrossRefGoogle Scholar
  106. 106.
    Zukor D, Brooks P, Gross A, Cameron J. Meniscal allograft experimental and clinical study. Orthop Rev. 1988;17:522–50.Google Scholar
  107. 107.
    Locht RC, Gross AE, Langer F. Late osteochondral allograft resurfacing for tibial plateau fractures. J Bone Joint Surg Am. 1984;66(3):328–35.CrossRefGoogle Scholar
  108. 108.
    Milachowski KA, Weismeier K, Wirth CJ. Homologous meniscus transplantation. Experimental and clinical results. Int Orthop. 1989;13(1):1–11.CrossRefGoogle Scholar
  109. 109.
    Monllau JC, González-Lucena G, Gelber PE, Pelfort X. Allograft meniscus transplantation: a current review. Techniques in Knee Surgery. 2010;9(2):107–13.CrossRefGoogle Scholar
  110. 110.
    Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(12):1706–19.CrossRefGoogle Scholar
  111. 111.
    Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Bonanzinga T, Nitri M, Raggi F, et al. MRI evaluation of a collagen meniscus implant: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3228–37.CrossRefGoogle Scholar
  112. 112.
    Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T, et al. Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthopaedics & traumatology, surgery & research: OTSR. 2014;100(1):153–7.CrossRefGoogle Scholar
  113. 113.
    Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res. 1999;367 Suppl:S281–92.CrossRefGoogle Scholar
  114. 114.
    Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med. 2012;40(4):844–53.CrossRefGoogle Scholar
  115. 115.
    Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs E-L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774–82.CrossRefGoogle Scholar
  116. 116.
    Verdonk R. Polyurethane implant (ACTIFIT). In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 83–97.CrossRefGoogle Scholar
  117. 117.
    Monllau JC. Collagen meniscal implant (CMI). In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 73–82.CrossRefGoogle Scholar
  118. 118.
    Bulgheroni P, Bulgheroni E, Regazzola G, Mazzola C. Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minimum two-year follow-up. Joints. 2013;1(4):161–6.Google Scholar
  119. 119.
    Gelber PE, Petrica AM, Isart A, Mari-Molina R, Monllau JC. The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee. 2015;22(5):389–94.CrossRefGoogle Scholar
  120. 120.
    Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, et al. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(7):933–43.CrossRefGoogle Scholar
  121. 121.
    Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, Bonanzinga T, Filardo G, Canales Passalacqua A, et al. Arthroscopic lateral collagen meniscus implant in a professional soccer player. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1740–3.CrossRefGoogle Scholar
  122. 122.
    Cengiz IF, Oliveira JM, Reis RL. Tissue engineering and regenerative medicine strategies for the treatment of osteochondral lesions. 3D Multiscale physiological human. Amsterdam: Springer; 2014. p. 25–47.Google Scholar
  123. 123.
    Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater. 2013;101(7):1133–42.CrossRefGoogle Scholar
  124. 124.
    Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94(4):1150–61.Google Scholar
  125. 125.
    Cengiz I, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, et al. Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1:1–10.CrossRefGoogle Scholar
  126. 126.
    González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, et al. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Am J Vet Res. 2016;77(7):779–88.CrossRefGoogle Scholar
  127. 127.
    Heo J, Koh RH, Shim W, Kim HD, Yim H-G, Hwang NS. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug delivery and translational research. 2016;6(2):148–58.CrossRefGoogle Scholar
  128. 128.
    Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen–GAG matrices in vitro. Biomaterials. 1999;20(8):701–9.CrossRefGoogle Scholar
  129. 129.
    Puetzer J, Bonassar L. Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue engineered meniscus. Tissue engineering Part A. 2016.Google Scholar
  130. 130.
    Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell‐seeded PLLA scaffolds. J Tissue Eng Regen Med. 2010;4(2):115–22.CrossRefGoogle Scholar
  131. 131.
    Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-β1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials. 2009;30(4):565–73.CrossRefGoogle Scholar
  132. 132.
    Warnock JJ, Fox DB, Stoker AM, Beatty M, Cockrell M, Janicek JC, et al. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study. PeerJ. 2014;2:e353.CrossRefGoogle Scholar
  133. 133.
    Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng. 2005;11(7–8):1095–104.CrossRefGoogle Scholar
  134. 134.
    Gu Y, Zhu W, Hao Y, Lu L, Chen Y, Wang Y. Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model. Experimental and therapeutic medicine. 2012;3(2):293–8.Google Scholar
  135. 135.
    Kwak HS, Nam J, Lee Jh, Kim HJ, Yoo JJ. Meniscal repair in vivo using human chondrocyte‐seeded PLGA mesh scaffold pretreated with platelet‐rich plasma. Journal of Tissue Engineering and Regenerative Medicine. 2014.Google Scholar
  136. 136.
    Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil. 2009;17(3):336–45.CrossRefGoogle Scholar
  137. 137.
    Zhang Z-Z, Jiang D, Ding J-X, Wang S-J, Zhang L, Zhang J-Y, et al. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 2016;43:314–26.CrossRefGoogle Scholar
  138. 138.
    Baker BM, Nathan AS, Gee AO, Mauck RL. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials. 2010;31(24):6190–200.CrossRefGoogle Scholar
  139. 139.
    Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006;14(10):1056–65.CrossRefGoogle Scholar
  140. 140.
    Fisher MB, Henning EA, Söegaard N, Bostrom M, Esterhai JL, Mauck RL. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds. J Biomech. 2015;48(8):1412–9.CrossRefGoogle Scholar
  141. 141.
    Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng A. 2012;18(15–16):1573–82.CrossRefGoogle Scholar
  142. 142.
    Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008;85(2):445–55.CrossRefGoogle Scholar
  143. 143.
    Freymann U, Endres M, Neumann K, Scholman H-J, Morawietz L, Kaps C. Expanded human meniscus-derived cells in 3-D polymer–hyaluronan scaffolds for meniscus repair. Acta Biomater. 2012;8(2):677–85.CrossRefGoogle Scholar
  144. 144.
    Gruchenberg K, Ignatius A, Friemert B, von Lübken F, Skaer N, Gellynck K, et al. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2218–29.CrossRefGoogle Scholar
  145. 145.
    Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32(2):639–51.CrossRefGoogle Scholar
  146. 146.
    Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8(1):289–301.CrossRefGoogle Scholar
  147. 147.
    Sarem M, Moztarzadeh F, Mozafari M, Shastri VP. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C. 2013;33(8):4777–85.CrossRefGoogle Scholar
  148. 148.
    Weinand C, Peretti GM, Adams Jr SB, Randolph MA, Savvidis E, Gill TJ. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg. 2006;126(9):599–605.CrossRefGoogle Scholar
  149. 149.
    Lu H, Cai D, Wu G, Wang K, Shi D. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes. Chinese journal of traumatology = Zhonghua chuang shang za zhi/Chinese Medical Association. 2011;14(4):195.Google Scholar
  150. 150.
    Neves AA, Medcalf N, Brindle KM. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials. 2005;26(23):4828–36.CrossRefGoogle Scholar
  151. 151.
    Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007;1(5):406–8.CrossRefGoogle Scholar
  152. 152.
    Martínez H, Brackmann C, Enejder A, Gatenholm P. Mechanical stimulation of fibroblasts in micro‐channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A. 2012;100(4):948–57.CrossRefGoogle Scholar
  153. 153.
    Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science. 2014;2(9):1195–209.CrossRefGoogle Scholar
  154. 154.
    Duarte ARC, Mano JF, Reis RL. Perspectives on: supercritical fluid technology for 3d tissue engineering scaffold applications. J Bioact Compat Polym. 2009;24(4):385–400.CrossRefGoogle Scholar
  155. 155.
    Guo W, Liu S, Zhu Y, Yu C, Lu S, Yuan M, et al. Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int. 2015;2015:517520.Google Scholar
  156. 156.
    Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.CrossRefGoogle Scholar
  157. 157.
    Thurber AE, Omenetto FG, Kaplan DL. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145–57.CrossRefGoogle Scholar
  158. 158.
    Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials. 2014;35(11):3527–40.CrossRefGoogle Scholar
  159. 159.
    Silva‐Correia J, Gloria A, Oliveira MB, Mano JF, Oliveira JM, Ambrosio L, et al. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels. J Biomed Mater Res A. 2013;101(12):3438–46.CrossRefGoogle Scholar
  160. 160.
    Wu J, Ding Q, Dutta A, Wang Y. Huang Y-h. Weng H et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration Acta Biomaterialia. 2015;16:49–59.Google Scholar
  161. 161.
    Maier D, Braeun K, Steinhauser E, Ueblacker P, Oberst M, Kreuz PC, et al. In vitro analysis of an allogenic scaffold for tissue‐engineered meniscus replacement. J Orthop Res. 2007;25(12):1598–608.CrossRefGoogle Scholar
  162. 162.
    Oliveira J, Pereira H, Yan L, Silva-Correia J, Oliveira A, Espregueira-Mendes J et al., inventors; Scaffold that enables segmental vascularization for the engineering of complex tissues and methods of making the same, PT Patent 106174, Priority date: 161/2013, 26–08-2013 2013.Google Scholar
  163. 163.
    Baker BM, Gee AO, Sheth NP, Huffman GR, Sennett BJ, Schaer TP, et al. Meniscus tissue engineering on the nanoscale—from basic principles to clinical application. Journal of Knee Surgery. 2009;22(01):45–59.CrossRefGoogle Scholar
  164. 164.
    Perán M, García MA, Lopez-Ruiz E, Jiménez G, Marchal JA. How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials. 2013;6(4):1333–59.CrossRefGoogle Scholar
  165. 165.
    Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28(11):1967–77.CrossRefGoogle Scholar
  166. 166.
    Subbiah R, Veerapandian M. S Yun K. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010;17(36):4559–77.CrossRefGoogle Scholar
  167. 167.
    Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28(2):344–53.CrossRefGoogle Scholar
  168. 168.
    Haynie DT, Zhang L, Zhao W, Rudra JS. Protein-inspired multilayer nanofilms: science, technology and medicine. Nanomedicine: Nanotechnology, Biology and Medicine. 2006;2(3):150–7.Google Scholar
  169. 169.
    Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008;9(3):1044–9.CrossRefGoogle Scholar
  170. 170.
    Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.CrossRefGoogle Scholar
  171. 171.
    De Coninck T, Elsner JJ, Linder-Ganz E, Cromheecke M, Shemesh M, Huysse W, et al. In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: a pilot study using open-MRI. Clin Biomech. 2014;29(8):898–905.CrossRefGoogle Scholar
  172. 172.
    Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):255–63.CrossRefGoogle Scholar
  173. 173.
    Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171–1.Google Scholar
  174. 174.
    Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng. 2013;15:115–36.CrossRefGoogle Scholar
  175. 175.
    Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 2006;12(4):969–79.CrossRefGoogle Scholar
  176. 176.
    Araujo V, Figueiredo C, Joazeiro P, Mora O, Toledo O. In vitro rapid organization of rabbit meniscus fibrochondrocytes into chondro-like tissue structures. J Submicrosc Cytol Pathol. 2002;34(3):335–43.Google Scholar
  177. 177.
    Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng. 2007;13(9):2195–205.CrossRefGoogle Scholar
  178. 178.
    Huey DJ, Athanasiou KA. Maturational growth of self-assembled, functional menisci as a result of TGF-β1 and enzymatic chondroitinase-ABC stimulation. Biomaterials. 2011;32(8):2052–8.CrossRefGoogle Scholar
  179. 179.
    MacBarb RF, Makris EA, Hu JC, Athanasiou KA. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 2013;9(1):4626–34.CrossRefGoogle Scholar
  180. 180.
    Zhong J-J. Recent advances in bioreactor engineering. Korean J Chem Eng. 2010;27(4):1035–41.CrossRefGoogle Scholar
  181. 181.
    Wang D, Liu W, Han B, Xu R. The bioreactor: a powerful tool for large-scale culture of animal cells. Curr Pharm Biotechnol. 2005;6(5):397–403.CrossRefGoogle Scholar
  182. 182.
    Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H. Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnol J. 2013;8(3):298–307.CrossRefGoogle Scholar
  183. 183.
    Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. J Biosci Bioeng. 2005;100(3):235–45.CrossRefGoogle Scholar
  184. 184.
    Martin Y, Vermette P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 2005;26(35):7481–503.CrossRefGoogle Scholar
  185. 185.
    Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials. 2010;31(26):6756–63.CrossRefGoogle Scholar
  186. 186.
    Puetzer JL, Ballyns JJ, Bonassar LJ. The effect of the duration of mechanical stimulation and post-stimulation culture on the structure and properties of dynamically compressed tissue-engineered menisci. Tissue Eng A. 2012;18(13–14):1365–75.CrossRefGoogle Scholar
  187. 187.
    Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, et al. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):223–31.CrossRefGoogle Scholar
  188. 188.
    Marsano A, Wendt D, Quinn T, Sims T, Farhadi J, Jakob M, et al. Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology. 2006;43(3):553–60.Google Scholar
  189. 189.
    Neves AA, Medcalf N, Brindle K. Functional assessment of tissue-engineered meniscal cartilage by magnetic resonance imaging and spectroscopy. Tissue Eng. 2003;9(1):51–62.CrossRefGoogle Scholar
  190. 190.
    Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell‐seeded PLLA scaffolds. J Biomed Mater Res A. 2010;92(3):896–905.Google Scholar
  191. 191.
    Ballyns JJ, Bonassar LJ. Dynamic compressive loading of image-guided tissue engineered meniscal constructs. J Biomech. 2011;44(3):509–16.CrossRefGoogle Scholar
  192. 192.
    Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials. 2012;33(4):1052–64.CrossRefGoogle Scholar
  193. 193.
    Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290(6):C1610–C5.CrossRefGoogle Scholar
  194. 194.
    Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21(6):963–9.CrossRefGoogle Scholar
  195. 195.
    Deponti D, Giancamillo AD, Scotti C, Peretti GM, Martin I. Animal models for meniscus repair and regeneration. J Tissue Eng Regen Med. 2015;9(5):512–27.CrossRefGoogle Scholar
  196. 196.
    Di Matteo B, Perdisa F, Gostynska N, Kon E, Filardo G, Marcacci M. Meniscal scaffolds—preclinical evidence to support their use: a systematic review. The open orthopaedics journal. 2015;9:143.CrossRefGoogle Scholar
  197. 197.
    Yamasaki T, Deie M, Shinomiya R, Yasunaga Y, Yanada S, Ochi M. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs. 2008;32(7):519–24.CrossRefGoogle Scholar
  198. 198.
    Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.CrossRefGoogle Scholar
  199. 199.
    Gu Y, Wang Y, Dai H, Lu L, Cheng Y, Zhu W. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-β1 in vitro. Mol Med Report. 2012;5(3):767–72.Google Scholar
  200. 200.
    Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13(5):1103–12.CrossRefGoogle Scholar
  201. 201.
    Amable PR, Carias RBV, Teixeira MVT, da Cruz Pacheco Í, do Amaral RJFC, Granjeiro JM et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. 2013;4(3):67.Google Scholar
  202. 202.
    Everts PA, Knape JT, Weibrich G, Schonberger J, Hoffmann J, Overdevest EP, et al. Platelet-rich plasma and platelet gel: a review. Journal of ExtraCorporeal Technology. 2006;38(2):174.Google Scholar
  203. 203.
    Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes J, Gobbi A. PRP for degenerative cartilage disease. A systematic review of clinical studies. Cartilage. 2016 1947603516670709Google Scholar
  204. 204.
    Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.CrossRefGoogle Scholar
  205. 205.
    Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.CrossRefGoogle Scholar
  206. 206.
    Anderson WF. Human gene therapy. Nature. 1998;392(6679):25.Google Scholar
  207. 207.
    Evans C, Ghivizzani S, Robbins P. Orthopedic gene therapy—lost in translation? J Cell Physiol. 2012;227(2):416–20.CrossRefGoogle Scholar
  208. 208.
    Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO molecular medicine. 2013;5(11):1642–61.CrossRefGoogle Scholar
  209. 209.
    Goto H, Shuler FD, Lamsam C, Moller HD, Niyibizi C, Fu FH, et al. Transfer of LacZ marker gene to the meniscus. The Journal of Bone & Joint Surgery. 1999;81(7):918–25.CrossRefGoogle Scholar
  210. 210.
    Cucchiarini M, Schetting S, Terwilliger E, Kohn D, Madry H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and α-SMA expression in human meniscal lesions. Gene Ther. 2009;16(11):1363–72.CrossRefGoogle Scholar
  211. 211.
    Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen S-S, et al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng. 2002;8(1):93–105.CrossRefGoogle Scholar
  212. 212.
    Madry H, Cucchiarini M, Kaul G, Kohn D, Terwilliger EF, Trippel SB. Menisci are efficiently transduced by recombinant adeno-associated virus vectors in vitro and in vivo. Am J Sports Med. 2004;32(8):1860–5.CrossRefGoogle Scholar
  213. 213.
    Martinek V, Usas A, Pelinkovic D, Robbins P, Fu FH, Huard J. Genetic engineering of meniscal allografts. Tissue Eng. 2002;8(1):107–17.CrossRefGoogle Scholar
  214. 214.
    Patel JM, Merriam AR, Kohn J, Gatt Jr CJ, Dunn MG. Negative outcomes of poly (l-lactic acid) fiber-reinforced scaffolds in an ovine total meniscus replacement model. Tissue Eng A. 2016;22(17–18):1116–25.CrossRefGoogle Scholar
  215. 215.
    Jülke H, Mainil-Varlet P, Jakob RP, Brehm W, Schäfer B, Nesic D. The role of cells in meniscal guided tissue regeneration a proof of concept study in a goat model. Cartilage. 2015;6(1):20–9.CrossRefGoogle Scholar
  216. 216.
    Zhu WH, Wang YB, Wang L, Qiu GF, Lu LY. Effects of canine myoblasts expressing human cartilage‑derived morphogenetic protein‑2 on the repair of meniscal fibrocartilage injury. Mol Med Rep. 2014;9(5):1767–72.Google Scholar
  217. 217.
    Hansen R, Bryk E, Vigorita V. Collagen scaffold meniscus implant integration in a canine model: a histological analysis. J Orthop Res. 2013;31(12):1914–9.CrossRefGoogle Scholar
  218. 218.
    Esposito AR, Moda M, SMdM C, de Santana GM, Barbieri JA, Munhoz MM, et al. PLDLA/PCL-T scaffold for meniscus tissue engineering. BioResearch open access. 2013;2(2):138–47.CrossRefGoogle Scholar

Copyright information

© The Regenerative Engineering Society 2017

Authors and Affiliations

  • Ibrahim Fatih Cengiz
    • 1
    • 2
  • Hélder Pereira
    • 1
    • 2
    • 3
    • 4
  • Joao Espregueira-Mendes
    • 2
    • 3
    • 5
    • 6
    • 7
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui L. Reis
    • 1
    • 2
  1. 1.3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s–PTGovernment Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Ripoll y De Prado Sports ClinicMurcia-Madrid FIFA Medical Centre of ExcellenceMurciaSpain
  4. 4.Orthopedic Department Centro Hospitalar Póvoa de VarzimVila do CondePortugal
  5. 5.Clínica do DragãoEspregueira-Mendes Sports Centre – FIFA Medical Centre of ExcellencePortoPortugal
  6. 6.Dom Henrique Research CentrePortoPortugal
  7. 7.Orthopedic Department of Minho UniversityBragaPortugal

Personalised recommendations