Advertisement

Journal of the Economic Science Association

, Volume 5, Issue 1, pp 112–122 | Cite as

When the eyes say buy: visual fixations during hypothetical consumer choice improve prediction of actual purchases

  • Taisuke ImaiEmail author
  • Min Jeong Kang
  • Colin F. Camerer
Original Paper

Abstract

Consumers typically overstate their intentions to purchase products, compared to actual rates of purchases, a pattern called “hypothetical bias”. In laboratory choice experiments, we measure participants’ visual attention using mousetracking or eye-tracking, while they make hypothetical as well as real purchase decisions. We find that participants spent more time looking both at price and product image prior to making a real “buy” decision than making a real “don’t buy” decision. We demonstrate that including such information about visual attention improves prediction of real buy decisions. This improvement is evident, although small in magnitude, using mousetracking data, but is not evident using eye-tracking data.

Keywords

Mousetracking Eye-tracking Hypothetical bias Prediction 

JEL Classification

D12 D90 C91 

Notes

Supplementary material

40881_2019_71_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (pdf 2143 KB)

References

  1. Berns, G. S., Bell, E., Capra, C. M., Prietula, M. J., Moore, S., Anderson, B., et al. (2012). The price of your soul: Neural evidence for the non-utilitarian representation of sacred values. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 754–762.CrossRefGoogle Scholar
  2. Brocas, I., Carrillo, J. D., Wang, S. W., & Camerer, C. F. (2014). Imperfect choice or imperfect attention? Understanding strategic thinking in private information games. Review of Economic Studies, 81, 944–970.CrossRefGoogle Scholar
  3. Camerer, C. F., Johnson, E., Rymon, T., & Sen, S. (1993). Cognition and framing in sequential bargaining for gains and losses. In K. Binmore, A. Kirman, & P. Tani (Eds.), Frontiers of game theory (pp. 27–47). Cambridge: MIT Press.Google Scholar
  4. Carson, R. T., & Hanemann, W. M. (2005). Contingent valuation. In K.-G. Mäler & J. Vincent (Eds.), Handbook of environmental economics (Vol. 2, pp. 821–936). New York: Elsevier.Google Scholar
  5. Costa-Gomes, M., Crawford, V. P., & Broseta, B. (2001). Cognition and behavior in normal-form games: An experimental study. Econometrica, 69, 1193–1235.CrossRefGoogle Scholar
  6. Cummings, R. G., Harrison, G. W., & Rutström, E. E. (1995). Homegrown values and hypothetical surveys: Is the dichotomous choice approach incentive-compatible? American Economic Review, 85, 260–266.Google Scholar
  7. FeldmanHall, O., Mobbs, D., Evans, D., Hiscox, L., Navrady, L., & Dalgleish, T. (2012). What we say and what we do: The relationship between real and hypothetical moral choices. Cognition, 123, 434–441.CrossRefGoogle Scholar
  8. Gabaix, X., Laibson, D., Moloche, G., & Weinberg, S. (2006). Costly information acquisition: Experimental analysis of a boundedly rational model. American Economic Review, 96, 1043–1068.CrossRefGoogle Scholar
  9. Green, P. E., & Srinivasan, V. (1990). Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54, 3–19.CrossRefGoogle Scholar
  10. Jamieson, L. F., & Bass, F. M. (1989). Adjusting stated intention measures to predict trial purchase of new products: A comparison of models and methods. Journal of Marketing Research, 26, 336–345.CrossRefGoogle Scholar
  11. Johnson, E. J., Camerer, C. F., Sen, S., & Rymon, T. (2002). Detecting failures of backward induction: Monitoring information search in sequential bargaining. Journal of Economic Theory, 104, 16–47.CrossRefGoogle Scholar
  12. Knoepfle, D. T., Wang, J. T.-Y., & Camerer, C. F. (2009). Studying learning in games using eye-tracking. Journal of the European Economic Association, 7, 388–398.CrossRefGoogle Scholar
  13. Konovalov, A., & Krajbich, I. (2017). Revealed indifference: Using response times to infer preferences. Available at SSRN:  https://doi.org/10.2139/ssrn.3024233.
  14. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13, 1292–1298.CrossRefGoogle Scholar
  15. Krajbich, I., Lu, D., Camerer, C., & Rangel, A. (2012). The attentional drift-diffusion model extends to simple purchasing decisions. Frontiers in Psychology, 3, 193.CrossRefGoogle Scholar
  16. Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108, 13852–13857.CrossRefGoogle Scholar
  17. List, J. A., & Gallet, C. A. (2001). What experimental protocol influence disparities between actual and hypothetical stated values? Environmental and Resource Economics, 20, 241–254.CrossRefGoogle Scholar
  18. Little, J., & Berrens, R. (2004). Explaining disparities between actual and hypothetical stated values: Further investigation using meta-analysis. Economics Bulletin, 3, 1–13.Google Scholar
  19. Lohse, G. L., & Johnson, E. J. (1996). A comparison of two process tracing methods for choice tasks. Organizational Behavior and Human Decision Processes, 68, 28–43.CrossRefGoogle Scholar
  20. Murphy, J. J., Allen, P. G., Stevens, T. H., & Weatherhead, D. (2005). A meta-analysis of hypothetical bias in stated preference valuation. Environmental and Resource Economics, 30, 313–325.CrossRefGoogle Scholar
  21. Reutskaja, E., Nagel, R., Camerer, C. F., & Rangel, A. (2011). Search dynamics in consumer choice under time pressure: An eye-tracking study. American Economic Review, 101, 900–926.CrossRefGoogle Scholar
  22. Shogren, J. F. (2005). Experimental methods and valuation. In K.-G. Maler & J. Vincent (Eds.), Handbook of environmental economics (Vol. 2, pp. 969–1027). New York: Elsevier.Google Scholar
  23. Silk, A. J., & Urban, G. L. (1978). Pre-test-market evaluation of new packaged goods: A model and measurement methodology. Journal of Marketing Research, 15, 171–191.CrossRefGoogle Scholar
  24. Wang, J. T.-Y., Spezio, M., & Camerer, C. F. (2010). Pinocchio’s pupil: Using eyetracking and pupil dilation to understand truth telling and deception in sender–receiver games. American Economic Review, 100, 984–1007.CrossRefGoogle Scholar

Copyright information

© Economic Science Association 2019

Authors and Affiliations

  1. 1.Ludwig Maximilian University of MunichMunichGermany
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations