Finite groups acting on elliptic surfaces
Research Article
First Online:
- 19 Downloads
Abstract
We show that automorphism groups of Hopf and Kodaira surfaces have unbounded finite subgroups. For elliptic fibrations on Hopf, Kodaira, bielliptic, and K3 surfaces, we make some observations on finite groups acting along the fibers and on the base of such a fibration.
Keywords
Elliptic surface Hopf surface Kodaira surface Automorphism groupMathematics Subject Classification
14J50Notes
Acknowledgements
The author is grateful to Sergey Gorchinskiy, Stefan Nemirovski, Yuri Prokhorov, and Egor Yasinsky for useful discussions.
References
- 1.Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 4. Springer, Berlin (2004)CrossRefGoogle Scholar
- 2.Bennett, C., Miranda, R.: The automorphism groups of the hyperelliptic surfaces. Rocky Mountain J. Math. 20(1), 31–37 (1990)MathSciNetCrossRefGoogle Scholar
- 3.Birkar, C.: Singularities of linear systems and boundedness of Fano varieties (2016). arXiv:1609.05543
- 4.Borcea, C.: Moduli for Kodaira surfaces. Compositio Math. 52(3), 373–380 (1984)MathSciNetzbMATHGoogle Scholar
- 5.Claudon, B., Höring, A., Lin, H.-Y.: The fundamental group of compact Kähler threefolds (2016). arXiv:1612.04224
- 6.Fujimoto, Y., Nakayama, N.: Compact complex surfaces admitting non-trivial surjective endomorphisms. Tohoku Math. J. (2) 57(3), 395–426 (2005)MathSciNetCrossRefGoogle Scholar
- 7.Kato, M.: Topology of Hopf surfaces. J. Math. Soc. Japan 27, 222–238 (1975)MathSciNetCrossRefGoogle Scholar
- 8.Kodaira, K.: On the structure of compact complex analytic surfaces I. Amer. J. Math. 86, 751–798 (1964)MathSciNetCrossRefGoogle Scholar
- 9.Kodaira, K.: On the structure of compact complex analytic surfaces II. Amer. J. Math. 88, 682–721 (1966)MathSciNetCrossRefGoogle Scholar
- 10.Matumoto, T., Nakagawa, N.: Explicit description of Hopf surfaces and their automorphism groups. Osaka J. Math. 37(2), 417–424 (2000)MathSciNetzbMATHGoogle Scholar
- 11.Oguiso, K.: Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen. J. Differential Geom. 78(1), 163–191 (2008)MathSciNetCrossRefGoogle Scholar
- 12.Prokhorov, Yu., Shramov, C.: Jordan property for groups of birational selfmaps. Compositio Math. 150(12), 2054–2072 (2014)MathSciNetCrossRefGoogle Scholar
- 13.Prokhorov, Yu., Shramov, C.: Automorphism groups of compact complex surfaces (2017). arXiv:1708.03566
- 14.Prokhorov, Yu., Shramov, C.: Automorphism groups of Inoue and Kodaira surfaces (2018). arXiv:1812.02400
- 15.Prokhorov, Yu., Shramov, C.: Finite groups of birational selfmaps of threefolds. Math. Res. Lett. 25(3), 957–972 (2018)MathSciNetCrossRefGoogle Scholar
- 16.Shramov, C., Vologodsky, V.: Automorphisms of pointless surfaces (2018). arXiv:1807.06477
Copyright information
© Springer Nature Switzerland AG 2019