Advertisement

European Journal of Mathematics

, Volume 5, Issue 3, pp 958–963 | Cite as

On the existence of Ulrich vector bundles on some surfaces of maximal Albanese dimension

  • Angelo Felice LopezEmail author
Research Article
  • 14 Downloads

Abstract

We establish the existence of simple Ulrich vector bundles on surfaces \(S \subset {\mathbb {P}}^N\) of maximal Albanese dimension with Open image in new window and Open image in new window .

Keywords

Vector bundle Ulrich bundle Non-special surfaces Maximal Albanese dimension 

Mathematics Subject Classification

14J60 14J29 

Notes

References

  1. 1.
    Aprodu, M., Costa, L., Mirò-Roig, R.M.: Ulrich bundles on ruled surfaces. J. Pure Appl. Algebra 222(1), 131–138 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aprodu, M., Farkas, G., Ortega, A.: Minimal resolutions, Chow forms and Ulrich bundles on \(K3\) surfaces. J. Reine Angew. Math. 730, 225–249 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Beauville, A.: An introduction to Ulrich bundles. Eur. J. Math. 4(1), 26–36 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beauville, A.: Ulrich bundles on abelian surfaces. Proc. Amer. Math. Soc. 144(11), 4609–4611 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beauville, A.: Ulrich bundles on surfaces with \(p_g=q=0\). arXiv:1607.00895
  6. 6.
    Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Borisov, L., Nuer, H.: Ulrich bundles on Enriques surfaces. Int. Math. Res. Not. IMRN 2018(13), 4171–4189 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Casnati, G.: Special Ulrich bundles on non-special surfaces with \(p_g=q=0\). Internat. J. Math. 28(8), # 1750061 (2017)CrossRefzbMATHGoogle Scholar
  9. 9.
    Casnati, G.: Erratum: “Special Ulrich bundles on non-special surfaces with \(p_g=q=0\)”. Internat. J. Math. 29(5), # 1892001 (2018)CrossRefzbMATHGoogle Scholar
  10. 10.
    Casnati, G.: Special Ulrich bundles on regular surfaces with non-negative Kodaira dimension (2018). arXiv:1809.08565
  11. 11.
    Casnati, G.: Rank two stable Ulrich bundles on anticanonically embedded surfaces. Bull. Aust. Math. Soc. 95(1), 22–37 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Casnati, G.: Ulrich bundles on non-special surfaces with \(p_g=0\) and \(q=1\). Rev. Mat. Complut. (2017, to appear)Google Scholar
  13. 13.
    Casnati, G.: Corrigendum to Ulrich bundles on non-special surfaces with \(p_g=0\) and \(q=1\). Preprint (2018)Google Scholar
  14. 14.
    Casanellas, M., Hartshorne, R.: Stable Ulrich bundles. With an appendix by F. Geiss, F.-O. Schreyer. Internat. J. Math. 23(8), # 1250083 (2012)CrossRefzbMATHGoogle Scholar
  15. 15.
    Coskun, E., Kulkarni, R.S., Mustopa, Y.: Pfaffian quartic surfaces and representations of Clifford algebras. Doc. Math. 17, 1003–1028 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eisenbud, D., Schreyer, F.-O.: Resultants and Chow forms via exterior syzygies. With an appendix by J. Weyman. J. Amer. Math. Soc. 16(3), 537–579 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Faenzi, D.: Ulrich bundles on K3 surfaces (2018). arXiv:1807.07826
  18. 18.
    Green, M., Lazarsfeld, R.: Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville. Invent. Math. 90(2), 389–407 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Herzog, J., Ulrich, B., Backelin, J.: Linear maximal Cohen–Macaulay modules over strict complete intersections. J. Pure Appl. Algebra 71(2–3), 187–202 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pons-Llopis, J., Tonini, F.: ACM bundles on del Pezzo surfaces. Matematiche (Catania) 64(2), 177–211 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità di Roma TreRomeItaly

Personalised recommendations