Advertisement

Journal of Dynamic Behavior of Materials

, Volume 5, Issue 1, pp 105–114 | Cite as

Plasticity-Damage Modeling of Strain Rate and Temperature Dependence of Aluminum Alloy 7075-T651

  • C. J. T. Mason
  • P. G. AllisonEmail author
  • O. L. Rodriguez
  • D. Z. Avery
  • B. J. Phillips
  • C. Leah
  • Z. McClelland
  • T. W. Rushing
  • L. Garcia
  • J. B. Jordon
Article
  • 22 Downloads

Abstract

This is the first study to correlate the observed damage evolution of ambient (298 K) and elevated (480 K) temperatures of quasi-static and dynamically-loaded wrought aluminum alloy 7075 (AA7075) to capture the strain rate and temperature influence on flow behavior with one set of material constants. In this research, an internal state variable (ISV) framework implementing a physically-based plasticity and damage constitutive model was used to capture the strain rate and temperature dependence of the wrought Al–Zn–Mg–Cu aluminum alloy. The model includes microstructural content processing history and is consistent with continuum level kinematics, kinetics, and thermodynamics. The ISV model captures deformations due to kinematic and isotropic stress-state dependent hardening and damage from the microscale that arise from microstructural features and defects in the wrought aluminum alloy. In addition, the ISV damage theory is based on void nucleation, void growth, and void coalescence. This research provides a foundation for capturing the structure–property relations from the microscale to the structural scale. Finite element methods coupled with internal state variables used to model the plasticity and damage state at the structural scale for high fidelity dynamic loading scenarios, such as blast and impact loading conditions.

Keywords

Electron microscopy High strain rate Mechanical behavior Aluminum alloy Elevated temperature AA7075 Dynamic loading Modeling Wrought Damage modeling Mechanical properties 

Notes

Funding

Funding was provided by Engineer Research and Development Center (Grant No. W911NF-11-D-0001).

References

  1. 1.
    Park JK, Ardell AJ (1983) Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metall Trans A.  https://doi.org/10.1007/BF02662363 Google Scholar
  2. 2.
    Zinkham RE (1968) Anisotropy and thickness effects in fracture of 7075-T6 and -T651 aluminum alloy. Eng Fracture Mech 1:275–276CrossRefGoogle Scholar
  3. 3.
    Lee W-S, Sue W-C, Lin C-F, Wu C-J (2000) The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J Mater Process Technol 100:116–122Google Scholar
  4. 4.
    Navaser M, Atapour M (2017) Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J Mater Sci Technol 33:155–165.  https://doi.org/10.1016/j.jmst.2016.07.008 CrossRefGoogle Scholar
  5. 5.
    Piascik RS (2015) The growth of small corrosion fatigue cracks in alloy 7075. NASA Technical Memorandum 869021.03.07.01.07 Hampton, VAGoogle Scholar
  6. 6.
    Quan GZ, Liu KW, Zhou J, Chen B (2009) Dynamic softening behaviors of 7075 aluminum alloy. Trans Nonferrous Met Soc China (English Ed).  https://doi.org/10.1016/S1003-6326(10)60104-5 Google Scholar
  7. 7.
    Adler PN, DeIasi R, Calorimetric studies of 7000 series aluminum alloys: II Comparison of 7075, 7050 and RX720 alloys, Metall Trans A (1977).  https://doi.org/10.1007/BF02667404 Google Scholar
  8. 8.
    Adler PN, Deiasi R, Geschwind G (1972) Influence of microstructure properties and stress corrosion of 7075 aluminum alloy on the mechanical susceptibility. Metall Trans 3(12):3191–3200CrossRefGoogle Scholar
  9. 9.
    Ardo AJDE (1970) The effect of microstructure on the stress-corrosion susceptibility of a high purity AI-Zn-Mg Alloy in a NaCI solution. Metall Trans 1:2573–2581Google Scholar
  10. 10.
    Jordon JB, Horstemeyer MF, Solanki K, Bernard JD, Berry JT, Williams TN (2009) Damage characterization and modeling of a 7075-T651 aluminum plate. Mater Sci Eng A 527:169–178.  https://doi.org/10.1016/j.msea.2009.07.049 CrossRefGoogle Scholar
  11. 11.
    Horstemeyer MF, Gokhale AM (1999) A void-crack nucleation model for ductile metals. Int J Solids Struct 36:5029–5055.  https://doi.org/10.1016/S0020-7683(98)00239-X CrossRefGoogle Scholar
  12. 12.
    Horstemeyer MF, Ramaswamy S (2000) On factors affecting localization and void growth in ductile metals: a parametric study. Int J Damage Mech 9:5–28.  https://doi.org/10.1177/105678950000900102 CrossRefGoogle Scholar
  13. 13.
    Mulholland M, Khraishi T, Shen YL, Horstemeyer M (2006) Void growth and interaction experiments: implications to the optimal straining rate in superplastic forming. Int J Plast 22:1728–1744.  https://doi.org/10.1016/j.ijplas.2006.02.004 CrossRefGoogle Scholar
  14. 14.
    Lee OS, Kim GH, Kim MS, Hwang JS (2003) Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading. KSME Int J 17:787–795CrossRefGoogle Scholar
  15. 15.
    Heimerl GJ, Inge JE (1955) National advisory committee for aeronautics tensile properties of 7075-T6 and 2024-T3 aluminum-alloy sheet heated at uniform temperature rates under constant load. Langley Aeronautical Lab, Langley FieldGoogle Scholar
  16. 16.
    Wang YG, Jiang ZX, Wang LL (2013) Dynamic tensile fracture behaviours of selected aluminum alloys under various loading conditions. Strain 49:335–347.  https://doi.org/10.1111/str.12040 CrossRefGoogle Scholar
  17. 17.
    Pothnis JR, Perla Y, Arya H, Naik NK (2011) High strain rate tensile behavior of aluminum alloy 7075 T651 and IS 2062 mild steel. J Eng Mater Technol 133:021026.  https://doi.org/10.1115/1.4003113 CrossRefGoogle Scholar
  18. 18.
    Tajally M, Emadoddin E (2011) Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater Des.  https://doi.org/10.1016/j.matdes.2010.09.001 Google Scholar
  19. 19.
    Cepeda-Jiménez CM, García-Infanta JM, Ruano OA, Carreño F (2011) High strain rate superplasticity at intermediate temperatures of the Al 7075 alloy severely processed by equal channel angular pressing. J Alloys Compd 509:9589–9597.  https://doi.org/10.1016/j.jallcom.2011.07.076 CrossRefGoogle Scholar
  20. 20.
    Børvik T, Hopperstad OS, Pedersen KO (2010) Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. Int J Impact Eng 37:537–551.  https://doi.org/10.1016/j.ijimpeng.2009.11.001 CrossRefGoogle Scholar
  21. 21.
    El-Magd E, Abouridouane M (2006) Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int J Impact Eng 32:741–758.  https://doi.org/10.1016/j.ijimpeng.2005.03.008 CrossRefGoogle Scholar
  22. 22.
    Lee W-S, Sue W-C, Lin C-F, Wu C-J (2000) The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J Mater Process Technol 100:116–122.  https://doi.org/10.1016/S0924-0136(99)00465-3 CrossRefGoogle Scholar
  23. 23.
    Sun ZC, Zheng LS, Yang H (2014) Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation. Mater Charact 90:71–80.  https://doi.org/10.1016/j.matchar.2014.01.019 CrossRefGoogle Scholar
  24. 24.
    Kesemen L, Kayran A (2017) High strain rate material characterization of Al 7075-T651 by modified taylor impact test and velocity interferometry. In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.  https://doi.org/10.2514/6.2017-0354
  25. 25.
    Horstemeyer M, McDowell D, Fan J (2001) From atom to autos, a new design paradigm using microstructure–property modelling, Monotonic Load. Cond. Sandia … Part 1: MoGoogle Scholar
  26. 26.
    Onsager L (1931) Irreversible processes. Phys Rev 37:405CrossRefGoogle Scholar
  27. 27.
    Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405–426.  https://doi.org/10.1103/PhysRev.37.405 CrossRefGoogle Scholar
  28. 28.
    Eckart C (1948) The thermodynamics of irreversible processes IV. The theory of elasticity and aaelasticity*. Phys. Rev. 73(4):373CrossRefGoogle Scholar
  29. 29.
    Eckart C (1940) The thermodynamics of irreversible processes. Phys Rev 58(3):267CrossRefGoogle Scholar
  30. 30.
    Rice JR (1971) Inelastic constitutive relations for solids: an internal variables theory and its application to metal plasticity. J Mech Phys Solids 19:433–455.  https://doi.org/10.1016/0022-5096(71)90010-X CrossRefGoogle Scholar
  31. 31.
    Kestin J, Rice JR (1970) Paradoxes in the application of thermodynamics to strained solids. In: A critical review of thermodynamics. Mono Book Corporation, Baltimore, 275–298Google Scholar
  32. 32.
    Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical treshold stress as an internal state variable. Acta Met 36:81–93.  https://doi.org/10.1016/0001-6160(88)90030-2 CrossRefGoogle Scholar
  33. 33.
    Freed AD (1988) Thermoviscoplastic model with application to copper, NASA Technical Paper 2845.Google Scholar
  34. 34.
    Bammann DJ (1984) An internal variable model of viscoplasticity. Int J Eng Sci 22:1041–1053.  https://doi.org/10.1016/0020-7225(84)90105-8 CrossRefGoogle Scholar
  35. 35.
    Horstemeyer MF, Lathrop J, Gokhale AM, Dighe M (2000) Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy. Theor Appl Fract Mech 33:31–47.  https://doi.org/10.1016/S0167-8442(99)00049-X CrossRefGoogle Scholar
  36. 36.
    McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363.  https://doi.org/10.1115/1.3601204 CrossRefGoogle Scholar
  37. 37.
    Cocks ACF, Ashby MF (1981) Creep fracture by void growth. In: Creep structure. Springer, Berlin, pp 368–387.  https://doi.org/10.1007/978-3-642-81598-0_25 CrossRefGoogle Scholar
  38. 38.
    Allison PG, Horstemeyer MF, Brown HR (2012) Modulus dependence on large scale porosity of powder metallurgy steel. J Mater Eng Perform 21:1422–1425.  https://doi.org/10.1007/s11665-011-0001-6 CrossRefGoogle Scholar
  39. 39.
    ASTM International (2004) Standard test methods for determining average grain size. ASTM International, West Conshochocken, p. 26Google Scholar
  40. 40.
    Rivera OG, Allison PG, Brewer LN, Jordon JB, Rodriguez OL, Whittington WR, Mcclelland Z, Garcia L, Hardwick N, Martens R (2018) Influence of texture and grain refinement on the mechanical behavior of AA2219 depositions fabricated by solid state additive manufacturing. Mater Sci Eng A 724:547–558CrossRefGoogle Scholar
  41. 41.
    Avery DZ, Rivera OG, Mason CJT, Phillips BJ, Jordon JB, Su J, Hardwick N, Allison PG (2018) Fatigue behavior of solid-state additive manufactured inconel 625. JOM.  https://doi.org/10.1007/s11837-018-3114-7 Google Scholar
  42. 42.
    Rivera OG, Allison PG, Jordon JB, Rodriguez OL, Brewer LN, McClelland Z, Whittington WR, Francis DK, Su J-Q, Martens RL, Hardwick N (2017) Microstructures and mechanical behavior of inconel 625 fabricated by solid-state additive manufacturing. Mater Sci Eng A.  https://doi.org/10.1016/j.msea.2017.03.105 Google Scholar
  43. 43.
    Rivera OG, Allison PG, Brewer LN, Jordon JB, Rodriguez OL, Whittington WR, Mcclelland Z, Garcia L, Hardwick N, Facility CA, Corporation A (n.d.) Microstructure influence on the mechanical properties of AA2219 fabricated by a novel additive friction stir deposition process. Acta Mater (under Rev.)Google Scholar
  44. 44.
    Rodriguez OL, Allison PG, Whittington WR, Francis DK, Rivera OG, Chou K, Gong X, Butler TM, Burroughs JF (2015) Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V. Mater Sci Eng A 641:323–327.  https://doi.org/10.1016/j.msea.2015.06.069 CrossRefGoogle Scholar
  45. 45.
    Rodriguez OL, Allison PG, Whittington WR, El Kadiri H, Rivera OG, Barkey ME (2018) Strain rate effect on the tension and compression stress-state asymmetry for electron beam additive manufactured Ti6Al4V. Mater Sci Eng A 713:125–133.  https://doi.org/10.1016/j.msea.2017.12.062 CrossRefGoogle Scholar
  46. 46.
    Rivera OG, Mcclelland Z, Whittington WR, Francis D, Moser RD, Allison PG (2016) Interrupted quasi-static and dynamic tensile experiments of fully annealed 301 stainless steel. In: Allanore A, Bartlett L, Wang C, Zhang L, Lee J (eds) 2016 EPD Congr. Wiley, Hoboken, pp 165–172.  https://doi.org/10.1002/9781119274742.ch19 Google Scholar
  47. 47.
    Chen W, Song B (2011) Split Hopkinson (Kolsky) Bar design, testing and applications. Spinger, New York. http://www.springer.com/series/1161
  48. 48.
    Francis D, Whittington WR, LawrimoreII WB, Allison PG, Turnage SA, Bhattacharyya JJ (2017) Split hopkinson pressure bar graphical analysis tool. Exp Mech 57(1):179–183CrossRefGoogle Scholar
  49. 49.
    Whittington WR, Oppedal AL, Turnage S, Hammi Y, Rhee H, Allison PG, Crane CK, Horstemeyer MF (2014) Capturing the effect of temperature, strain rate, and stress state on the plasticity and fracture of rolled homogeneous armor (RHA) steel. Mater Sci Eng A 594:82–88.  https://doi.org/10.1016/j.msea.2013.11.018 CrossRefGoogle Scholar
  50. 50.
    Allison PG, Grewal H, Hammi Y, Brown HR, Whittington WR, Horstemeyer MF (2013) Plasticity and fracture modeling/experimental study of a porous metal under various strain rates, temperatures, and stress states. J Eng Mater Technol 135:41008.  https://doi.org/10.1115/1.4025292 CrossRefGoogle Scholar
  51. 51.
    Tucker M, Horstemeyer M, Gullet P, Kadiri HE, Whittington W (2009) Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr Mater 60:182–185.  https://doi.org/10.1016/j.scriptamat.2008.10.011 CrossRefGoogle Scholar
  52. 52.
    Horstemeyer MF (2012) Integrated computational materials engineering (ICME) for metals. Wiley, HobokenCrossRefGoogle Scholar
  53. 53.
    Allison PG, Horstemeyer MF, Hammi Y, Brown HR, Tucker MT, Hwang Y-K (2011) Microstructure–property relations of a steel powder metal under varying temperatures, strain rates, and stress states. Mater Sci Eng A 529:335–344.  https://doi.org/10.1016/j.msea.2011.09.037 CrossRefGoogle Scholar
  54. 54.
    Jordon JB, Horstemeyer MF, Solanki K, Xue Y (2007) Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mech Mater 39:920–931CrossRefGoogle Scholar
  55. 55.
    Solanki KN, Horstemeyer MF, Steele WG, Hammi Y, Jordon JB (2010) Calibration, validation, and verification including uncertainty of a physically motivated internal state variable plasticity and damage model. Int J Solids Struct 47:186–203.  https://doi.org/10.1016/j.ijsolstr.2009.09.025 CrossRefGoogle Scholar
  56. 56.
    Lugo M, Jordon JB, Horstemeyer MF, Tschopp MA, Harris J, Gokhale AM (2011) Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique. Mater Sci Eng A 528:6708–6714.  https://doi.org/10.1016/j.msea.2011.05.017 CrossRefGoogle Scholar
  57. 57.
    Zhang T, Guo Z-R, Fu P, Yuan, H-S, Zhang H-S, Zhang (2018) Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology. Acta Mech Sin 34:327–333.  https://doi.org/10.1007/s10409-017-0673-8 CrossRefGoogle Scholar
  58. 58.
    Bruschi S, Poggio S, Quadrini F, Tata ME (2004) Workability of Ti-6Al-4V alloy at high temperatures and strain rates. Mater Lett.  https://doi.org/10.1016/j.matlet.2004.06.058 Google Scholar
  59. 59.
    Hirschhorn JS (1963) Stacking faults in the refractory metals and alloys—a review. J Less Common Met 5:493–509.  https://doi.org/10.1016/0022-5088(63)90062-6 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlabamaTuscaloosaUSA
  2. 2.NASA Marshall Space Flight CenterMaterials and Processes LaboratoryHuntsvilleUSA
  3. 3.Geotechnical and Structures LaboratoryU.S. Army Engineer Research and Development CenterVicksburgUSA

Personalised recommendations