Journal of Dynamic Behavior of Materials

, Volume 4, Issue 3, pp 308–316 | Cite as

Low-Velocity Impact Response of Woven Carbon Composites in Arctic Conditions

  • A. G. Castellanos
  • K. Cinar
  • I. Guven
  • P. PrabhakarEmail author


Arctic exploration has risen in the past few years due to which new challenges have emerged with regard to lightweighting in naval structures using fiber reinforced composite materials. An in-depth understanding of the mechanical behavior and failure mechanisms of fiber reinforced composites in arctic conditions need to be established for use in such applications. Towards that, the focus of this paper is on establishing the low-velocity impact behavior of carbon fiber reinforced polymeric composites in arctic temperature (– 50 \(^{\circ }\hbox {C}\) considered here). Impact responses, such as the contact force, displacement and absorbed energy, at four impact energies of 20, 25, 30 and 35 J are determined at arctic temperature (– 50 \(^{\circ }\hbox {C}\)) and compared against those at room temperature (25 \(^{\circ }\hbox {C}\)). Optical microscopy and micro computed tomography (micro-CT) scanning are used for identifying the extent and type of failure on the surfaces and in the interior of the composites, respectively. Key changes in failure mechanisms are observed with respect to changing impact energies and temperatures, and a detailed account is provided in this paper.


Dynamic impact Low-velocity impact Failure mechanisms Arctic temperature 



The authors would like to acknowledge the support through the AFOSR Young Investigator Award (FA9550-15-1-0216) and DoD HBCU/MI Basic Research Grant (W911NF-15-1-0430) for conducting the research presented in this paper.


  1. 1.
    Bortz DR, Merino C, Martin-Gullon I (2011) Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates. Composites 42:1584CrossRefGoogle Scholar
  2. 2.
    Lars B, Sumfleth J, Hedemann H, Schulte K (2010) Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Composites 41:1419CrossRefGoogle Scholar
  3. 3.
    Tenney D, Davis J, Byron R, Johnston N (2009) NASA composite materials development: lessons learned and future challenges, Conference Paper LF99-9370, pp 1–58Google Scholar
  4. 4.
    Julias A, Murali V (2014) Effect of carbon fiber position on the impact behavior og glass/carbon fiber hybrid composite laminates. Int J Appl Eng Res 9(26):9103Google Scholar
  5. 5.
    Malhotra A, Guild FJ (2014) Impact damage to composite laminates: effect of impact location. Appl Compos Mater 21:165CrossRefGoogle Scholar
  6. 6.
    Karakuzu R, Erbil E, Mehmet A (2010) Impact characterization of glass/epoxy composite plates: an experimental and numerical study. Composites 41:388CrossRefGoogle Scholar
  7. 7.
    Sjoblom PO, Hartness JT, Cordell TM (1988) On low-velocity impact testing of composite materials. Compos Mater 22:30CrossRefGoogle Scholar
  8. 8.
    Shivakumar K, Elber W, Illg W (1985) Prediction of impact force and duration due to low velocity impact on circular composite laminates. J Appl Mech 52:674CrossRefGoogle Scholar
  9. 9.
    Safri S, Sultan M, Yidris N, Mustapha F (2014) Low velocity and high velocity impact test on composite materials: a review. Int J Eng Sci 3(9):50Google Scholar
  10. 10.
    Abrate S (1994) Impact on laminated composites: recent advances. Appl Mech Rev 47(11):517CrossRefGoogle Scholar
  11. 11.
    Caprino V, Lopresto V, Scarponi C, Briotti G (1999) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers. Compos Sci Technol 59:2279CrossRefGoogle Scholar
  12. 12.
    Szekrenyes A (2011) Overview on the experimental investigations of the fracture toughness in composite materials. J Eng Mater Technol 100:1Google Scholar
  13. 13.
    Shyr TW, Pan YH (2003) Impact resistance and damage characteristic of composite laminates. Compos Struct 62:193CrossRefGoogle Scholar
  14. 14.
    Babu S, Shivanand HK (2014) Impact analysis of laminated composite on glass fiber and carbon fiber. Int J Emerg Technol Adv Eng 4(6):824Google Scholar
  15. 15.
    Siow VPW, Shim YP (1998) An experimental study of low velocity impact damage in woven fiber composites. J Compos Mater 32:1178CrossRefGoogle Scholar
  16. 16.
    Liu D, Malvern LE (1987) Matrix cracking in impacted glass/epoxy plates. J Compos Mater 21:594CrossRefGoogle Scholar
  17. 17.
    Sultan MT, Worden K, Staszewski WJ, Hodzic A (2012) Impact damage characterization of composite laminates using a statistical approach. Compos Sci Technol 72:1108CrossRefGoogle Scholar
  18. 18.
    Murat BIS, Rahman AAA (2017) Study of impact damage beahvior in coven carbon fiber plates. In: Engineering physics international conference, EPIC 2016, pp 47–54Google Scholar
  19. 19.
    Gomez-del Rio T, Zaera R, Barbero E, Navarro C (2006) Damage in cfrps due to low velocity impact at low temperature. Composites 36:41CrossRefGoogle Scholar
  20. 20.
    Badawy A (2012) Impact behavior of glass fibers reinforced composite lamnates at different temperatures. Ain Shams Eng 3:105CrossRefGoogle Scholar
  21. 21.
    Icten BM, Atas C, Aktas M, Karakuzu R (2009) Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Compos Struct 91:318CrossRefGoogle Scholar
  22. 22.
    Icten BM (2009) Repeated impact behavior og glass/epoxy laminates. Polym Compos 30:1545CrossRefGoogle Scholar
  23. 23.
    Salehi-Khojin A, Bashirzadeh R, Mahinfalah M, Nakhaei-Jazar R (2006) The role of temperature on impact properties of kevlar/fiberglass composite laminates. Composites 37:593CrossRefGoogle Scholar
  24. 24.
    Sobrinho LL, Ferreira M, Bastian FL (2009) The effect of water absorption on an ester vinyl resin system. Mater Res 12:353CrossRefGoogle Scholar
  25. 25.
    Signor AW, Chin JW (2003) Effects of ultraviolet radiation exposure on vinyl ester matrix resins: chemical and mechanical characterization. Polym Degrad Stab 79:1CrossRefGoogle Scholar
  26. 26.
    Chittajallu K (2004) Computational modeling of the vacuum assisted resin transfer molding (VARTM) process, Thesis Clemson UniversityGoogle Scholar
  27. 27.
    ASTM D7136/D7136M-15. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, Journal of ASTM International D7136/D7136M-15, pp 1–16Google Scholar
  28. 28.
    Cantwell W, Morton J (1990) Impact perforation of carbon-fiber reinforced plastics. Compos Sci Technol 38:119CrossRefGoogle Scholar
  29. 29.
    Robinson P, Davies GAO (1992) Impactor mass and specimen geometry effects in low velocity impact of laminated composites. Int J Impact Eng 12(2):189CrossRefGoogle Scholar
  30. 30.
    A. D695-15, Standard test method for compressive properties of rigid plastics, Journal of ASTM International D695-15, pp 1–8 (2015)Google Scholar
  31. 31.
    Dutta PK (1994) Low-temperature compressive strength of glass-fiber-reinforced polymer composites. J Offshore Mech Arct Eng 116:167CrossRefGoogle Scholar
  32. 32.
    Chu XX, Wu ZW, Huang RJ, Zhou Y, Li LF (2010) Mechanical and thermal expansion properties of glass fibers reinforced peek composites at cryogenic temperatures. Cryogenics 50:84CrossRefGoogle Scholar
  33. 33.
    Garcia R, Castellanos AG, Prabhakar P (2017) Influence of arctic seawater exposure on the flexural behavior of woven carbon/vinyl ester composites. J Sandw Struct Mater. Google Scholar
  34. 34.
    Belingardi G, Vadori R (2003) Influence of the laminate thickness in low velocity impact behavior of composite material plate. Compos Struct 61:27CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2018

Authors and Affiliations

  • A. G. Castellanos
    • 1
  • K. Cinar
    • 2
  • I. Guven
    • 2
  • P. Prabhakar
    • 1
    Email author
  1. 1.Department of Civil & Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mechanical and Nuclear EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations