Skip to main content
Log in

Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Lu YB, Li QM (2011) About the dynamic uniaxial tensile strength of concrete-like materials. Int J Impact Eng 38:171–180

    Article  Google Scholar 

  2. IRSM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103

    Article  Google Scholar 

  3. IRSM (1979) Suggested methods for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci 16:135–140

    Google Scholar 

  4. IRSM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci 20:285–290

    Article  Google Scholar 

  5. ASTM (2008) Standard test method for direct tensile strength of intact rock core specimens (D2936–08). Annual Book of ASTM Standards, ASTM International, West Conshohocken

    Google Scholar 

  6. ASTM (2008) Standard test method for splitting tensile strength of intact rock core specimens (D3967–08). Annual Book of ASTM Standards, ASTM International, West Conshohocken

    Google Scholar 

  7. ASTM (2011) Standard test method for measurement of fracture toughness (E1820–11). Annual Book of ASTM Standards, ASTM International, West Conshohocken

    Google Scholar 

  8. Bragov AM, Grushevsky GM, Lomunov AK (1996) Use of the Kolsky method for confined tests of soft soils. Exp Mech 36:237–242

    Article  Google Scholar 

  9. Bragov AM, Lomunov AK, Sergichev IV, Tsembelis K, Proud WG (2008) Determination of physicomechanical properties of soft soils from medium to high strain rates. Int J Impact Eng 35:967–976

    Article  Google Scholar 

  10. Huang J, Xu S, Hu S (2013) Effects of grain size and gradation on the dynamic responses of quartz sands. Int J Impact Eng 59:1–10

    Article  Google Scholar 

  11. Luo H, Lu H, Cooper WL, Komanduri R (2011) Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates. Exp Mech 51:1499–1510

    Article  Google Scholar 

  12. Luo H, Cooper WL, Lu H (2014) Effect of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int J Impact Eng 65:40–55

    Article  Google Scholar 

  13. Martin BE, Chen W, Song B, Akers SA (2009) Moisture effects on the high strain-rate behavior of sand. Mech Mater 41:786–798

    Article  Google Scholar 

  14. Martin BE, Kabir E, Chen W (2013) Undrained high-pressure and high strain-rate response of dry sand under triaxial loading. Int J Impact Eng 54:51–63

    Article  Google Scholar 

  15. Song B, Chen W, Luk V (2009) Impact compressive response of dry sand. Mech Mater 41:777–785

    Article  Google Scholar 

  16. Malvar LJ, Crawford JE (1998) Dynamic increase factors for concrete. In: 28th DDESB seminar, Orlando

  17. Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95:735–739

    Google Scholar 

  18. Chen W, Song B (2011) Split Hopkinson (Kolsky) bar design, testing and applications. Springer, New York

    Book  Google Scholar 

  19. Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106

    Article  Google Scholar 

  20. Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp Mech 45:186–195

    Article  Google Scholar 

  21. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478

    Article  Google Scholar 

  22. Birkimer DL, Lindemann R (1971) Dynamic tensile strength of concrete materials. ACI J 68:47–49

    Google Scholar 

  23. Goldsmith W, Sackman JL, Ewert C (1976) Static and dynamic fracture strength of Barre granite. Int J Rock Mech Min Sci 13:303–309

    Article  Google Scholar 

  24. ASTM (1996) Standard test method for splitting tensile strength of cylindrical concrete specimens (C496). Annual Book of ASTM Standards, ASTM International, West Conshohocken

    Google Scholar 

  25. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B62:676–700

    Article  Google Scholar 

  26. Reinhardt HW (1982) Concrete under impact loading tensile strength and bond. HERON 27:2–48

    Google Scholar 

  27. Zielinski AJ, Reinhardt HW (1982) Stress-strain behaviour of concrete and mortar at high rates of tensile loading. Cem Concr Res 12:309–319

    Article  Google Scholar 

  28. Zielinski AJ, Reinhard HW, Körmeling HA (1981) Experiments on concrete under uniaxial impact tensile loading. Mater Constr 14:103–112

    Article  Google Scholar 

  29. Zielinski AJ, Reinhard HW, Körmeling HA (1981) Experiments on concrete under repeated uniaxial impact tensile loading. Mater Constr 14:164–169

    Google Scholar 

  30. Campbell JD, Duby J (1956) The yield behavior of mild steel in dynamic compression. Proc R Soc Lond A 236:24–40

    Article  Google Scholar 

  31. Körmeling HA, Reinhardt HW (1987) Strain rate effects on steel fibre concrete in uniaxial tension. Int J Cem Compos Lightweight Concr 9:197–204

    Article  Google Scholar 

  32. Reinhardt HW, Körmeling HA, Zielinski AJ (1986) The split Hopkinson bar, a versatile tool for the impact testing of concrete. Mater Constr 19:55–63

    Article  Google Scholar 

  33. Asprone D, Cadoni E, Prota A (2009) Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates. ACI Struct J 106:106–113

    Google Scholar 

  34. Asprone D, Cadoni E, Prota A, Manfredi G (2009) Dynamic behavior of a Mediterranean natural stone under tensile loading. Int J Rock Mech Min Sci 46:514–520

    Article  Google Scholar 

  35. Cadoni E, Meda A, Plizzari GA (2009) Tensile behaviour of FRC under high strain-rate. Mater Struct 42:1283–1294

    Article  Google Scholar 

  36. Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43:667–676

    Article  Google Scholar 

  37. Caverzan A, Cadoni E, di Prisco M (2012) Dynamic behavior of HPFRCC at high strain rate: the fiber role. HPFRCC 6:339–346

    Google Scholar 

  38. Caverzan A, Cadoni E, di Prisco M (2013) Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure. Mech Mater 59:87–109

    Article  Google Scholar 

  39. Cadoni E, Solomos G, Albertini C (2009) Mechanical characterization of concrete in tension and compression at high strain rate using a modified Hopkinson bar. Mag Concr Res 61:221–230

    Article  Google Scholar 

  40. Cadoni E, Solomos G, Albertini C (2013) Concrete behaviour in direct tension tests at high strain rates. Mag Concr Res 65:660–672

    Article  Google Scholar 

  41. Cadoni E, Labibes K, Berra M, Giangrasso M, Albertini C (2000) High-strain-rate tensile behaviour of concrete. Mag Concr Res 52:365–370

    Article  Google Scholar 

  42. Cadoni E, Albertini C, Labibes K, Solomos G (2001) Behavior of plain concrete subjected to tensile loading at high strain-rate. In: de Borst et al (ed) Fracture mechanics of concrete structures. Swets & Zeitlinger, Lisse, pp 341–347

    Google Scholar 

  43. Canodi E, Labibes K, Albertini C, Berra M, Giangrasso M (2001) Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels. Mater Struct 34:21–26

    Article  Google Scholar 

  44. Cadoni E, Labibes K, Berra M, Giangrasso M, Albertini C (2001) Influence of aggregate size on strain-rate tensile behavior of concrete. ACI Mater J 98:220–223

    Google Scholar 

  45. Cadoni E, Albertini C, Solomos G (2006) Analysis of the concrete behaviour in tension at high strain-rate by a modified Hopkinson bar in support of impact resistant structural design. J Phys IV 134:647–652

    Google Scholar 

  46. Song B, Antoun B, Connelly K, Korellis J, Lu W-Y (2011) Improved Kolsky tension bar for high-rate tensile characterization of materials. Meas Sci Technol 22:045704

    Article  Google Scholar 

  47. Tedesco JW, Ross CA, Kuennen ST (1993) Experimental and numerical analysis of high strain rate splitting tensile tests. ACI Mater J 90:162–169

    Google Scholar 

  48. Neville AM (1973) Properties of concrete. Wiley, New York

    Google Scholar 

  49. Tedesco JW, Ross CA, Brunair RM (1989) Numerical analysis of dynamic split cylinder tests. Comput Struct 32:609–624

    Article  Google Scholar 

  50. Hughes ML, Tedesco JW, Ross CA (1993) Numerical analysis of high strain rate splitting-tensile tests. Comput Struct 47:653–671

    Article  Google Scholar 

  51. John R, Antoun T, Rajendran AM (1992) Effect of strain rate and size on tensile strength of concrete. In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Shock compression of condensed matter 1991. Proceedings of the American physical society topical conference, pp 501–504

  52. Dutta PK, Kim K (1993) High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures. CRREL Report 93-16

  53. Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain rate on concrete strength. ACI Mater J 92:37–47

    Google Scholar 

  54. Tedesco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. J Press Vessel Technol 120:398–405

    Article  Google Scholar 

  55. Nakamura Y, Cho SH, Kaneko K, Kajiki S, Kiritani Y (2012) Dynamic fracture experiments of mortar using a high-speed loading apparatus driven by explosives. Sci Technol Energ Mater 73:136–141

    Google Scholar 

  56. Siregar RA, Daimaruya M, Fuad K (2007) Dynamic splitting-tensile test and numerical analysis for brittle materials. AIP Conf Proc 909:68–73

    Google Scholar 

  57. Mahabadi OK, Cottrell BE, Grasselli G (2010) An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite. Rock Mech Rock Eng 43:707–716

    Article  Google Scholar 

  58. Saksala T, Hokka M, Kuokkala VT, Mäkinen J (2013) Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int J Rock Mech Min Sci 59:128–138

    Google Scholar 

  59. Fang X, Xu J (2016) A modified overstress model to simulate dynamic split tensile tests and its experimental validation. Rock Mech Rock Eng 49:3823–3828

    Article  Google Scholar 

  60. Chen X, Wu S, Zhou J (2014) Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique. J Mater Civ Eng 26:04014005

    Article  Google Scholar 

  61. Gomez JT, Shukla A, Sharma A (2001) Static and dynamic behavior of concrete and granite in tension with damage. Theor Appl Fract Mech 36:37–49

    Article  Google Scholar 

  62. Lok TS, Zhao PJ, Lu G (2003) Using the split Hopkinson pressure bar to investigate the dynamic behaviour of SFRC. Mag Concr Res 55:183–191

    Article  Google Scholar 

  63. Bragov AM, Petrov YuV, Karihaloo BL, Konstantinov AY, Lamzin DA, Lomunov AK, Smirnov IV (2013) Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete. Eng Fract Mech 110:477–488

    Article  Google Scholar 

  64. Su Y, Li J, Wu C, Wu P, Li ZX (2016) Effects of steel fibres on dynamic strength of UHPC. Constr Build Mater 114:708–718

    Article  Google Scholar 

  65. Zhao Z, Jing L, Pei Q, Ma HW, Wang ZH (2016) An experimental study of the dynamic split tension properties of reinforced concrete. Strength Mater 48:63–68

    Article  Google Scholar 

  66. Huang S, Xia K, Yan F, Feng X (2010) An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng 43:677–683

    Article  Google Scholar 

  67. Dai F, Xia K (2010) Loading rate dependent of tensile strength anisotropy of Barre granite. Pure Appl Geophys 167:1419–1432

    Article  Google Scholar 

  68. Cadoni E, Bragov AM, Dotta M, Forni D, Konstantinov A, Lomunov A (2012) Mechanical characterization of rocks at high strain rate. EPJ Web Conf 26:01021

    Article  Google Scholar 

  69. Yan F, Feng XT, Chen R, Xia K, Jin C (2012) Dynamic tensile failure of the rock interface between Tuff and Basalt. Rock Mech Rock Eng 45:341–348

    Article  Google Scholar 

  70. Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng 48:2213–2223

    Article  Google Scholar 

  71. Li D, Wang T, Cheng T, Sun X (2016) Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring. Trans Nonferrous Met Soc China 26:1912–1918

    Article  Google Scholar 

  72. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A (2014) Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test. Int J Rock Mech Min Sci 70:101–108

    Google Scholar 

  73. Zhao Y, Liu S, Jiang Y, Wang K, Huang Y (2016) Dynamic tensile strength of coal under dry and saturated conditions. Rock Mech Rock Eng 49:1709–1720

    Article  Google Scholar 

  74. Dong S, Xia K, Huang S, Yin T (2011) Rate dependence of the tensile and flexural strengths of glass-ceramic Macor. J Mater Sci 46:394–399

    Article  Google Scholar 

  75. Chen R, Dai F, Qin J, Lu F (2013) Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids. Exp Mech 53:1153–1159

    Article  Google Scholar 

  76. Awaji H, Sato S (1979) Diametrical compression testing method. J Eng Mater Technol 101:139–147

    Article  Google Scholar 

  77. Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15:1867–1870

    Article  Google Scholar 

  78. Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100

    Article  Google Scholar 

  79. Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41:252–260

    Article  Google Scholar 

  80. Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43:657–666

    Article  Google Scholar 

  81. Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267

    Article  Google Scholar 

  82. Lu Y, Song ZH (2012) On the strain rate limits in dynamic testing of concrete-like heterogeneous materials. EPJ Web Conf 26:04035

    Article  Google Scholar 

  83. Dai F, Xia K, Luo SN (2008) Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. Rev Sci Instrum 79:123903

    Article  Google Scholar 

  84. Dai F, Xia K, Tang L (2010) Rate dependence of the flexural tensile strength of Laurentian granite. Int J Rock Mech Min Sci 47:469–475

    Article  Google Scholar 

  85. Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24:985–998

    Article  Google Scholar 

  86. Chen R, Xia K, Fai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76:1268–1276

    Article  Google Scholar 

  87. Dai F, Chen R, Iqbal MJ, Xia K (2010) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min Sci 47:606–613

    Article  Google Scholar 

  88. Hobbs DW (1965) An assessment of a technique for determining the tensile strength of rock. Br J Appl Phys 16:259

    Article  Google Scholar 

  89. Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, New York

    Google Scholar 

  90. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc Lond A213:437–456

    Article  Google Scholar 

  91. Kolsky H, Shi YY (1958) Fracture produced by stress pulses in glass-like solids. Proc Phys Soc 72:447–453

    Article  Google Scholar 

  92. Landon JW, Quinney H (1923) Experiments with the Hopkinson pressure bar. Proc R Soc Lond A103:622–643

    Article  Google Scholar 

  93. Kolsky H (1963) Stress waves in solids. Dover, New York

    Google Scholar 

  94. Rinehart JS, Pearson J (1964) Behavior of metals under impulsive loads. American Society for Metals, Dover, New York

    Google Scholar 

  95. Khan AS, Irani FK (1987) An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech Mater 6:285–292

    Article  Google Scholar 

  96. Klepaczko JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25:387–409

    Article  Google Scholar 

  97. Millinger FM, Birkimer DL (1966) Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading. Department of the Army, Ohio River Division Laboratories, Corps of Engineers, Technical Report 4-46

  98. Diamaruya M, Kobayashi H, Nonaka T (1997) Impact tensile strength and fracture of concrete. J Phys IV 07(C3):253–258

    Google Scholar 

  99. Diamaruya M, Kobayashi H (2000) Measurements of impact tensile strength of concrete and mortar using reflected tensile stress waves. J Phys IV 10:Pr9-P173–Pr9-178

    Google Scholar 

  100. Wang L (2007) Foundations of stress waves. Elsevier, Amsterdam

    Google Scholar 

  101. Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955

    Article  Google Scholar 

  102. Brara A, Camborde F, Klepaczko JR, Mariotti C (2001) Experimental and numerical study of concrete at high strain rates in tension. Mech Mater 33:33–45

    Article  Google Scholar 

  103. Brara A, Klepaczko JR (2004) Dynamic tensile behavior of concrete: experiment and numerical analysis. ACI Mater J 101:162–167

    Google Scholar 

  104. Brara A, Klepaczko JR (2006) Experimental characterization of concrete in dynamic tension. Mech Mater 38:253–267

    Article  Google Scholar 

  105. Brara A, Klepaczko JR (2007) Fracture energy of concrete at high loading rates in tension. Int J Impact Eng 34:424–435

    Article  Google Scholar 

  106. Schuler H, Mayrhofer C, Thoma K (2006) Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng 32:1635–1650

    Article  Google Scholar 

  107. Goldsmith W, Polivka M, Yang T (1966) Dynamic behavior of concrete. Exp Mech 6:65–79

    Article  Google Scholar 

  108. Wu H, Zhang Q, Huang F, Jin Q (2005) Experimental and numerical investigation on the dynamic tensile strength of concrete. Int J Impact Eng 32:605–617

    Article  Google Scholar 

  109. Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min Sci 45:397–406

    Article  Google Scholar 

  110. Weerheijm J, Van Doormaal JCAM. (2007) Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests. Int J Impact Eng 34:609–626

    Article  Google Scholar 

  111. Weerheijm J, Vegt I, Van Breugel K (2009) The rate dependency of concrete in tension—new data for wet, normal and dry conditions. DYMAT 2009, EDP Sciences, pp 95–101

  112. Pierron F, Forquin P (2012) The virtual fields method applied to spalling tests on concrete. EPJ Web Conf 26:01054

    Article  Google Scholar 

  113. Pierron F, Forquin P (2012) Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48:388–405

    Article  Google Scholar 

  114. Forquin P (2012) An optical correlation technique for characterizing the crack velocity in concrete. Eur Phys J Spec Topics 206:89–95

    Article  Google Scholar 

  115. Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40:763–777

    Article  Google Scholar 

  116. Novikov SA, Divnov II, Ivanov AG (1966) The study of fracture of steel, aluminum, and copper under explosive loading. Phys Metals Metal Sci 21:608–615

    Google Scholar 

  117. Erzar B, Buzaud E, Forquin P, Pontiroli C (2009) Tensile strength of dried mortar over a wide range of strain rate. DYMAT 2009, EDP Sciences, pp 603–609

  118. Millon O, Riedel W, Thoma K, Fehling E, Nöldgen M (2009) Fiber-reinforced ultra-high performance concrete under tensile loads. DYMAT 2009, EDP Sciences, pp 671–677

    Google Scholar 

  119. Forquin P, Erzar B (2010) Dynamic fragmentation process in concrete under impact and spalling tests. Int J Fract 163:193–215

    Article  Google Scholar 

  120. Ožbolt J, Sharma A, Írhan B, Sola E (2014) Tensile behavior of concrete under high loading rates. Int J Impact Eng 69:55–68

    Article  Google Scholar 

  121. Mechtcherine V, Millon O, Butler M, Thoma K (2011) Mechanical behaviour of strain hardening cement-based composites under impact loading. Cem Concr Compos 33:1–11

    Article  Google Scholar 

  122. Dean A, Heard W, Loeffler C, Martin B, Nie X (2016) A new Kolsky bar dynamic spall technique for brittle materials. J Dyn Behav Mater 2:246–250

    Article  Google Scholar 

Download references

Acknowledgements

Permission to publish was granted by Director, Geotechnical and Structures Laboratory of the U.S. Army Engineer Research and Development Center. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heard, W., Song, B., Williams, B. et al. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review. J. dynamic behavior mater. 4, 74–94 (2018). https://doi.org/10.1007/s40870-017-0139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0139-x

Keywords

Navigation