Advertisement

On the bosonization of the super Jordan plane

  • Nicolás Andruskiewitsch
  • Dirceu BagioEmail author
  • Saradia Della Flora
  • Daiana Flôres
Article
  • 10 Downloads

Abstract

Let H and K be the bosonizations of the Jordan and super Jordan plane by the group algebra of a cyclic group; the algebra K projects onto an algebra L that can be thought of as the quantum Borel of \(\mathfrak {sl}(2)\) at \(-\,1\). The finite-dimensional simple modules over H and K, are classified; they all have dimension 1, respectively \(\le 2\). The indecomposable L-modules of dimension \(\le 5\) are also listed. An interesting monoidal subcategory of \({\text {rep}}\,L\) is described.

Keywords

Super Jordan plane Representation Bosonization Borel subalgebra 

Mathematics Subject Classification

16G30 16G60 16T05 

Notes

References

  1. 1.
    Andruskiewitsch, N., Angiono, I., Heckenberger, I.: Liftings of Jordan and super Jordan planes. Proc. Edinb. Math. Soc., II. Ser. (to appear) Google Scholar
  2. 2.
    Andruskiewitsch, N., Angiono, I., Heckenberger, I.: On finite GK-dimensional Nichols algebras over Abelian groups. Mem. Am. Math. Soc. (to appear) Google Scholar
  3. 3.
    Andruskiewitsch, N., Bagio, D., Della Flora, S., Flôres, D.: Representations of the super Jordan plane. São Paulo J. Math. Sci. 11, 312–325 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Iyudu, N.: Representation spaces of the Jordan plane. Commun. Algebra 42(8), 3507–3540 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Reca, S., Solotar, A.: Homological invariants relating the super Jordan plane to the Virasoro algebra. J. Algebra 507, 120–185 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Srinivasan, B.: The modular representation ring of a cyclic p-group. Proc. Lond. Math. Soc. 14, 677–688 (1964)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.FaMAF-Universidad Nacional de Córdoba, CIEM (CONICET)CórdobaArgentine Republic
  2. 2.Departamento de MatemáticaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations