Advertisement

Explicit construction of irreducible modules for \(U_q(\mathfrak {gl}_n)\)

  • Vyacheslav FutornyEmail author
  • Luis Enrique Ramirez
  • Jian Zhang
Article
  • 12 Downloads

Abstract

We construct new families of \(U_q(\mathfrak {gl}_n)\)-modules by continuation from finite dimensional representations. Each such module is associated with a combinatorial object—admissible set of relations. More precisely, we prove that any admissible set of relations leads to a family of irreducible \(U_q(\mathfrak {gl}_n)\)-modules. Finite dimensional and generic modules are particular cases of this construction.

Keywords

Quantum group Gelfand–Tsetlin module Gelfand–Tsetlin basis Tableaux realization 

Mathematics Subject Classification

Primary 17B67 

Notes

Acknowledgements

V.F. is supported in part by CNPq (304467/2017-0) and by Fapesp (2014/09310-5). L.E.R. is supported by Fapesp (2018/17955-7) and J. Z. is supported by Fapesp (2015/05927-0).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

References

  1. 1.
    Colarusso, M., Evens, S.: On algebraic integrability of Gelfand–Zeitlin fields. Transform. Groups 15(1), 46–71 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Colarusso, M., Evens, S.: The Gelfand–Zeitlin integrable system and K-orbits on the flag variety. Symmetry Represent. Theory Appl. 257, 85–119 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Drozd, Y., Futorny, V., Ovsienko, S.: Harish–Chandra subalgebras and Gelfand–Zetlin modules. Math. Phys. Sci. 424, 72–89 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fomenko, A.: Euler equation on finite-dimensional Lie groups. Izv. Akad. Nauk SSSR Ser. Mat. 42, 396–415 (1978)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Futorny, V., Grantcharov, D., Ramirez, L.E.: Irreducible generic Gelfand–Tsetlin modules of \((\mathfrak{gl}_n)\). Symmetry Integr. Geom. Methods Appl. 11, 018 (2015)zbMATHGoogle Scholar
  6. 6.
    Futorny, V., Grantcharov, D., Ramirez, L.E.: Singular Gelfand–Tsetlin modules for \(\mathfrak{gl}(n)\). Adv. Math. 290, 453–482 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Futorny, V., Grantcharov, D., Ramirez, L.E.: New singular Gelfand–Tsetlin \(\mathfrak{gl} (n)\)-modules of index \(2\). Commun. Math. Phys. 355(3), 1209–1241 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Futorny, V., Hartwig, J.: De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum \((\mathfrak{gl}_n)\). Linear Algebra Appl. 568, 1–9 (2018)Google Scholar
  9. 9.
    Futorny, V., Ovsienko, S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Futorny, V., Ovsienko, S.: Fibers of characters in Gelfand–Tsetlin categories. Trans. Am. Math. Soc. 366, 4173–4208 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Futorny, V., Ramirez, L.E., Zhang, J.: Combinatorial construction of Gelfand–Tsetlin modules for \((\mathfrak{gl}_n)\). Adv. Math. 343, 681–711 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Futorny, V., Ramirez, L.E., Zhang, J.: Irreducible subquotients of generic Gelfand–Tsetlin modules over \(U_q(\mathfrak{gl}_n)\). J. Pure Appl. Algebra 222(10), 3182–3194 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gelfand, I., Graev, M.: Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them. Izv. Rossiiskoi Akad. Nauk. Ser. Mat. 296, 1329–1356 (1965)MathSciNetGoogle Scholar
  14. 14.
    Gelfand, I., Tsetlin, M.: Finite-dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk SSSR (N.S.) 71, 825–828 (1950)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Guillemin, V., Sternberg, S.: The Gelfand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52(1), 106–128 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Graev, M.: Infinite-dimensional representations of the Lie algebra \(gl(n, \mathbb{C})\) related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group \(GL(n, \mathbb{C})\). Acta Appl. Math. 81, 93–120 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Graev, M.: A continuous analogue of Gelfand–Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group GL(n, C) in the space of functions on the manifold of these schemes. Dokl. Akad. Nauk. 412(2), 154–158 (2007)MathSciNetGoogle Scholar
  18. 18.
    Jimbo, M.: Quantum R Matrix Related to the Generalized Toda System: An Algebraic Approach, Field Theory, Quantum Gravity and Strings, pp. 335–361. Springer, Berlin (1988)Google Scholar
  19. 19.
    Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics I. In studies in lie theory dedicated to A. Joseph on his sixtieth birthday. Progr. Math. 243, 319–364 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics II. The unity of mathematics in honor of the ninetieth birthday of I. M. Gelfand. Progr. Math. 244, 387–420 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lemire, F., Patera, J.: Formal analytic continuation of Gelfand’s finite dimensional representations of \(\mathfrak{gl}(n, \mathbb{C})\). J. Math. Phys. 20(5), 820–829 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mazorchuk, V.: Tableaux realization of generalized Verma modules. Can. J. Math. 50, 816–828 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mazorchuk, V.: On categories of Gelfand–Tsetlin modules. In: Duplij, S., Wess, J. (eds.) Noncommutative Structures in Mathematics and Physics, pp. 299–307. Springer, Berlin (2001)CrossRefGoogle Scholar
  24. 24.
    Mazorchuk, V., Turowska, L.: On Gelfand–Tsetlin modules over \(U_{q}(\mathfrak{gl}(n))\). Czechoslov. J. Phys. 50, 139–141 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Molev, A.: Gelfand–Tsetlin bases for classical Lie algebras. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 4, pp. 109–170. Elsevier, Amsterdam (2006)Google Scholar
  26. 26.
    Ovsienko, S.: Finiteness statements for Gelfand–Zetlin modules. In: Third International Algebraic Conference in the Ukraine (Ukrainian), Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, pp. 323–338 (2002)Google Scholar
  27. 27.
    Ueno, K., Shibukawa, Y., Takebayashi, T.: Gelfand–Zetlin basis for \(U_q(gl_{n+1})\) modules. Lett. Math. Phys. 18(3), 215–221 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ueno, K., Shibukawa, Y., Takebayashi, T.: Construction of Gelfand–Tsetlin Basis for \(U_q(\mathfrak{gl}(N+1))\)-modules. Publ. RIMS Kyoto Univ. 26, 667–679 (1990)CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhelobenko, D.: Compact Lie Groups and Their Representations (Translations of Mathematical Monographs), vol. 40. AMS, Providence (1974)Google Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.Universidade Federal do ABCSanto AndréBrazil

Personalised recommendations