On the apparatus of differentiation DI–DV for posets

  • Agustín Moreno CañadasEmail author
  • Veronica Cifuentes Vargas


The apparatus of differentiation DI–DV was introduced by A.G. Zavadskij to classify different kind of posets, in particular, Zavadskij et al. described categorical properties of algorithms of differentiation DI and DII as Gabriel did for the algorithm of differentiation with respect to a maximal point introduced by Nazarova and Roiter. In this paper, it is presented categorical properties of the algorithms of differentiation DIII, DIV and DV for posets with involution.


Algorithm of differentiation Categorical equivalence Gabriel quiver Indecomposable representation Matrix problem \({\mathscr {P}}\)-space Poset with involution Quiver Representation of posets 

Mathematics Subject Classification

16G20 16G60 16G30 


Compliances with ethical standard

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Arnold, D.M.: Abelian Groups and Representations of Finite Partially Ordered Sets. CMS Books in Mathematics, vol. 2, p. 244. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bautista, R., Dorado, I.: Algebraically equipped posets. I. Bol. Soc. Mat. Mex 23, 557–609 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belousov, K.I., Nazarova, L.A., Roiter, A.V., Sergejchuk, V.V.: Elementary and multi elementary representations of vectoroids. Ukr. Math. J. 47(11), 1661–1687 (1995) (in Russian); English transl., Ukr. Mat. Zh. 47(11), 1451–1477 (1995)Google Scholar
  4. 4.
    Bondarenko, V.M., Zavadskij, A.G.: Posets with an equivalence relation of tame type and of finite growth. Can. Math. Soc. Conf. Proc. 11, 67–88 (1991)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bondarenko, V.M., Nazarova, L.A., Roiter, A.V.: Tame partially ordered sets with involution. Proc. Steklov Inst. Math. 183, 177–189 (1991)zbMATHGoogle Scholar
  6. 6.
    Cañadas, A.M., Zavadskij, A.G.: Categorical description of some differentiation algorithms. J. Algebra Its Appl. 5(5), 629–652 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cañadas, A.M.: Categorical properties of the algorithm of differentiation VII for equipped posets. JPANTA 25(2), 177–213 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cañadas, A.M., Marin, I.D., Espinosa, P.F.F.: Categorical properties of the algorithm of differentiation VIII, and on the algorithm of differentiation DIX for equipped posets. JPANTA 29(2), 133–173 (2013)zbMATHGoogle Scholar
  9. 9.
    Cañadas, A.M., Palma, N.P., Quitian, M.H.: Algorithms of differentiation of posets to analyze tactics of war. FJMS Spec. (Comput. Sci.) V, 501–525 (2013)Google Scholar
  10. 10.
    Cañadas, A.M., Vargas, V.C., Espinosa, P.F.F.: On sums of figurate numbers by using algorithms of differentiation of posets. FJMS 32(2), 99–140 (2014)zbMATHGoogle Scholar
  11. 11.
    Gabriel, P.: Représentations indécomposables des ensemblés ordonnés. Semin. P. Dubreil, 26 annee 1972/73, Algebre, Expose vol. 13, pp. 301–304 (1973)Google Scholar
  12. 12.
    Gabriel, P., Nazarova, L.A., Roiter, A.V., Sergejchuk, V.V., Vossieck, D.: Tame and wild subspace problems. Ukr. Math. J. 45, 335–372 (1993); English transl., Ukr. Mat. Zh. 45, 313–352 (1993)Google Scholar
  13. 13.
    Kleiner, M.M.: Partially ordered sets of finite type. Zap. Nauchn. Semin. LOMI 28, 32–41 (1972) (in Russian); English transl., J. Sov. Math. 3(5), 607–615 (1975)Google Scholar
  14. 14.
    Nazarova, L.A., Roiter, A.V.: Representations of partially ordered sets. Zap. Nauchn. Semin. LOMI 28, 5–31 (1972) (in Russian); English transl., J. Sov. Math. 3, 585–606 (1975)Google Scholar
  15. 15.
    Nazarova, L.A., Roiter, A.V.: Categorical matrix problems and the Brauer–Thrall conjecture. Preprint Inst. Math. AN UkSSR, Ser. Mat. 73.9, 1–100 (1973) (in Russian); English transl., in Mitt. Math. Semin. Giessen 115 (1975)Google Scholar
  16. 16.
    Nazarova, L.A., Roiter, A.V.: Representations of bipartite completed posets. Comment. Math. Helv. 63, 498–526 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nazarova, L.A., Zavadskij, A.G.: Partially ordered sets of tame type. Akad. Nauk Ukrain. SSR Inst. Mat. Kiev 16, 122–143 (1977). (Russian) Google Scholar
  18. 18.
    Nazarova, L.A., Zavadskij, A.G.: Partially ordered sets of finite growth. Funct. Anal. i Prilozhen, 19(2), 72–73 (1982) (in Russian); English transl., Funct. Anal. Appl. 16, 135–137 (1982)Google Scholar
  19. 19.
    Outdot, S.Y.: Persistence theory: from quiver representations to data analysis. Appl. Math. 209, 218 (2016). AMSMathSciNetGoogle Scholar
  20. 20.
    Rump, W.: Two-point differentiation for general orders. J. Pure Appl. Algebra 153, 171–190 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ringel, C.M.: Tame Algebras and Integral Quadratic Forms, LNM, vol. 1099, pp. 1–371. Springer, Berlin (1984)Google Scholar
  22. 22.
    Rump, W.: Differentiation for orders and artinian rings. Algebras Represent. Theory 7, 395–417 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schröder, B.: Ordered Sets an Introduction. Birkhäuser, Boston (2002)Google Scholar
  24. 24.
    Simson, D.: Linear Representations of Partially Ordered Sets and Vector Space Categories. Gordon and Breach, London (1992)zbMATHGoogle Scholar
  25. 25.
    Zabarilo, A.V., Zavadskij, A.G.: One-parameter equipped posets and their representations, Funct. Anal. i Prilozhen, 34(2), 72–75 (2000) (Russian); English transl., Funct. Anal. Appl., 34(2), 138–140 (2000)Google Scholar
  26. 26.
    Zavadskij, A.G.: Differentiation with respect to a pair of points, Matrix Prob. Collect. sci. Works. Kiev pp. 115–121 (1977). (in Russian) Google Scholar
  27. 27.
    Zavadskij, A.G., Kiričenko, V.V.: Semimaximal rings of finite type. Math. Sb. 103, 323–345 (1977). (in Russian)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Zavadskij, A.G.: The Auslander–Reiten quiver for posets of finite growth. Topics Algebra Banach Cent. Publ. 26, 569–587 (1990). Part 1MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zavadskij, A.G.: An algorithm for posets with an equivalence relation. Can. Math. Soc. Conf. Proc. 11, 299–322 (1991). AMSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Zavadskij, A.G.: Tame equipped posets. Linear Algebra Appl. 365, 389–465 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zavadskij, A.G.: Equipped posets of finite growth, representations of algebras and related topics. AMS Fields Inst. Commun. Ser. 45 (2005)Google Scholar
  32. 32.
    Zavadskij, A.G.: On two point differentiation and its generalization Algebraic structures and their representations. AMS Contemp. Math. Ser. 376 (2005)Google Scholar
  33. 33.
    Zavadskij, A.G.: Representations of generalized equipped posets and posets with automorphisms over Galois field extensions. J. Algebra 332, 386–413 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational University of ColombiaBogotáColombia

Personalised recommendations