Advertisement

On the regularity of matrices with uniform polynomial entries

Article

Abstract

In this text the regularity of matrices with special polynomial entries is studied. Up to some mild conditions it is shown that these matrices are regular if a natural limit size is not exceeded. The proof draws connections to generalized Vandermonde matrices and Schur polynomials that are discussed in detail.

Keywords

Matrix with polynomial entries Generalized Vandermonde matrix Schur polynomial 

Mathematics Subject Classification

15A15 11C20 15A36 

References

  1. 1.
    Aronov, B., Asano, T., Kikuchi, Y., Nandy, S.C., Sasahara, S., Uno, T.: A generalization of magic squares with applications to digital halftoning. Theory Comput Syst. 42, 143–156 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braess, D.: Nonlinear Approximation Theory. Springer Series in Computational Mathematics 7. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  3. 3.
    Brunat, J.M., Montes, A.: The power-composition determinant and its application to global optimization. SIAM. J. Matrix Anal. Appl. 23(2), 459471 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brunat, J.M., Krattenthaler, C., Lascoux, A., Montes, A.: Some composition determinants. Linear Algebra Appl. 416, 355–364 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chipalkatti, J., Mohammed, T.: Standard Tableaux and Kronecker projections of Specht modules. Int. Electron. J. Algebra 10, 123–150 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    De Marchi, S.: Polynomials arising in factoring generalized Vandermonde determinants: an algorithm for computing their coefficients. Math. Comput. Model. 34, 271–281 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fröberg, R., Shapiro, B.: On Vandermonde varieties. Math. Scand. 119(1), 7391 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fulton, W., Harris, J.: Representation Theory (Graduate Texts in Mathematics, 129). Springer, New York (1991)Google Scholar
  9. 9.
    Heineman, E.R.: Generalized Vandermonde determinants. Trans. Am. Math. Soc. 31(3), 464–476 (1929)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    King, R.C.: Generalised Vandermonde determinants and Schur functions. Proc. Am. Math. Soc. 48(1), 53–56 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Klinker, F.: The decomposition of the spinor bundle of Grassmann manifolds. J. Math. Phys. 48(11), 113511 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koike, K., Terada, I.: On the decomposition of tensor products of representations of the classical groups by means of the universal character. Adv. Math. 74, 57–86 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type \(B_n,\;C_n,\;D_n\). J. Algebra 107(2), 466–511 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Krattenthaler, C.: Advanced determinant calculus. Sémin. Lothar. Comb. 42 (1999). Art. B42q (electronic)Google Scholar
  15. 15.
    Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York (1940)MATHGoogle Scholar
  17. 17.
    Lorenz, F.: Lineare Algebra I. Spektrum Akademischer Verlag, 4. Aufl. 2003, 2. Nachdruck (2008)Google Scholar
  18. 18.
    Pinkus, A.: Ridge Functions (Cambridge Tracts in MAthematics 205). Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  19. 19.
    Schlickewei, H.P., Viola, C.: Generalized Vandermonde determinants. Acta Arith 95(2), 123137 (2000)MathSciNetMATHGoogle Scholar
  20. 20.
    Stanley, R.P.: Theory and application of plane partitions. Part I and Part II. Studies Appl. Math. 50, 167–188 (1971)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2017

Authors and Affiliations

  1. 1.Faculty of MathematicsTU Dortmund UniversityDortmundGermany

Personalised recommendations