Sturm 3-ball global attractors 1: Thom–Smale complexes and meanders

  • Bernold FiedlerEmail author
  • Carlos Rocha


This is the first of three papers on the geometric and combinatorial characterization of global Sturm attractors which consist of a single closed 3-ball. The underlying scalar PDE is parabolic,
$$\begin{aligned} u_t = u_{xx} + f(x,u,u_x), \end{aligned}$$
on the unit interval \(0< x<1\) with Neumann boundary conditions. Equilibria are assumed to be hyperbolic. Geometrically, we study the resulting Thom–Smale dynamic complex with cells defined by the unstable manifolds of the equilibria. The Thom–Smale complex turns out to be a regular cell complex. Our geometric description involves a bipolar orientation of the 1-skeleton, a hemisphere decomposition of the boundary 2-sphere by two polar meridians, and a meridian overlap of certain 2-cell faces in opposite hemispheres. The combinatorial description is in terms of the Sturm permutation, alias the meander properties of the shooting curve for the equilibrium ODE boundary value problem. It involves the relative positioning of extreme 2-dimensionally unstable equilibria at the Neumann boundaries \(x=0\) and \(x=1\), respectively, and the overlapping reach of polar serpents in the shooting meander. In the present paper we show the implications
$$\begin{aligned} \text {Sturm attractor}\quad \Longrightarrow \quad \text {Thom--Smale complex} \quad \Longrightarrow \quad \text {meander}. \end{aligned}$$
The sequel, part 2, closes the cycle of equivalences by the implication
$$\begin{aligned} \text {meander} \quad \Longrightarrow \quad \text {Sturm attractor}. \end{aligned}$$
Each implication, or mapping, involves certain constructions which are tuned such that the final 3-ball Sturm global attractor defined by the meander combinatorics coincides with the originally given Sturm 3-ball. Many explicit examples and illustrations will be discussed in part 3. The present 3-ball trilogy extends our previous trilogy on planar Sturm global attractors towards the still elusive goal of geometric and combinational characterizations of all Sturm global attractors of arbitrary dimension.


Parabolic partial differential equation Nodal property Regular cell complex Bipolar graph Hamiltonian path 



With great pleasure we express our profound gratitude to Waldyr M. Oliva, whose deep geometric insights and friendly challenges are a visible inspiration for us since so many years. Extended delightful hospitality by the authors is mutually acknowledged. Suggestions concerning the Thom–Smale complex were generously provided by Jean–Michel Bismut. Gustavo Granja generously shared his deeply topological view point, precise references included. Anna Karnauhova has contributed all illustrations with great patience, ambition, and her inimitable artistic touch. Typesetting was expertly accomplished by Ulrike Geiger. This work was partially supported by DFG/Germany through SFB 910 project A4 and by FCT/Portugal through project UID/MAT/04459/2013.


  1. 1.
    Angenent, S.: The Morse–Smale property for a semi-linear parabolic equation. J. Differ. Equ. 62, 427–442 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Angenent, S.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnold, V.I.: A branched covering \(CP^2 \rightarrow S^4\), hyperbolicity and projective topology. Sib. Math. J. 29, 717–726 (1988)CrossRefGoogle Scholar
  4. 4.
    Arnold, V.I., Vishik, M.I., et al.: Some solved and unsolved problems in the theory of differential equations and mathematical physics. Russ. Math. Surv. 44, 157–171 (1989)CrossRefGoogle Scholar
  5. 5.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North Holland, Amsterdam (1992)zbMATHGoogle Scholar
  6. 6.
    Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach. Astérisque, 205. Société Mathématique de France, Marseille (1992)Google Scholar
  8. 8.
    Bott, R.: Morse theory indomitable. Publ. Math. I.H.É.S. 68, 99–114 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brunovský, P.: The attractor of the scalar reaction diffusion equation is a smooth graph. J. Dyn. Differ. Equ. 2, 293–323 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brunovský, P., Fiedler, B.: Numbers of zeros on invariant manifolds in reaction–diffusion equations. Nonlinear Anal. TMA 10, 179–193 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. Dyn. Rep. 1, 57–89 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations II: the complete solution. J. Differ. Equ. 81, 106–135 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chafee, N., Infante, E.: A bifurcation problem for a nonlinear parabolic equation. J. Appl. Anal. 4, 17–37 (1974)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. Colloq. AMS, Providence (2002)zbMATHGoogle Scholar
  15. 15.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Appl. Math. 56, 157–179 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Wiley, Chichester (1994)zbMATHGoogle Scholar
  17. 17.
    Fiedler, B., Rocha, C.: Heteroclinic orbits of semilinear parabolic equations. J. Differ. Equ. 125, 239–281 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fiedler, B., Rocha, C.: Realization of meander permutations by boundary value problems. J. Differ. Equ. 156, 282–308 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fiedler, B., Rocha, C.: Orbit equivalence of global attractors of semilinear parabolic differential equations. Trans. Am. Math. Soc. 352, 257–284 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type, II: connection graphs. J. Differ. Equ. 244, 1255–1286 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type, I: bipolar orientations and Hamiltonian paths. J. Reine Angew. Math. 635, 71–96 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type, III: small and platonic examples. J. Dyn. Differ. Equ. 22, 121–162 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fiedler, B., Rocha, C.: Nonlinear Sturm global attractors: unstable manifold decompositions as regular CW-complexes. Discrete Contin. Dyn. Syst. 34, 5099–5122 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fiedler, B., Rocha, C.: Schoenflies spheres as boundaries of bounded unstable manifolds in gradient Sturm systems. J. Dyn. Differ. Equ. 27, 597–626 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fiedler, B., Rocha, C.: Sturm 3-balls and global attractors 2: design of Thom–Smale complexes. J. Dyn. Differ. Equ. arXiv:1704.00344 (2017). (submitted)
  26. 26.
    Fiedler, B., Rocha, C.: Sturm 3-balls and global attractors 3: examples of Thom–Smale complexes. Discrete Contin. Dyn. Syst. A. arXiv:1708.00690 (2017). (submitted)
  27. 27.
    Fiedler, B., Scheel, A.: Spatio-temporal dynamics of reaction–diffusion patterns. In: Kirkilionis, M., et al. (eds.) Trends in Nonlinear Analysis, pp. 23–152. Springer, Berlin (2003)CrossRefGoogle Scholar
  28. 28.
    Fiedler, B., Rocha, C., Wolfrum, M.: A permutation characterization of Sturm global attractors of Hamiltonian type. J. Differ. Equ. 252, 588–623 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fiedler, B., Grotta-Ragazzo, C., Rocha, C.: An explicit Lyapunov function for reflection symmetric parabolic differential equations on the circle. Russ. Math. Surv. 69, 419–433 (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    Franks, J.M.: Morse–Smale flows and homotopy theory. Topology 18, 199–215 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Fritsch, R., Piccinini, R.A.: Cellular Structures in Topology. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  32. 32.
    Fusco, G., Oliva, W.: Jacobi matrices and transversality. Proc. R. Soc. Edinb. A 109, 231–243 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Fusco, G., Rocha, C.: A permutation related to the dynamics of a scalar parabolic PDE. J. Differ. Equ. 91, 75–94 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Galaktionov, V.A.: Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications. Chapman & Hall, Boca Raton (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. AMS, Providence (1988)Google Scholar
  36. 36.
    Hale, J.K., Magalhães, L.T., Oliva, W.M.: Dynamics in Infinite Dimensions. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  37. 37.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 804. Springer, New York (1981)CrossRefGoogle Scholar
  38. 38.
    Henry, D.: Some infinite dimensional Morse–Smale systems defined by parabolic differential equations. J. Differ. Equ. 59, 165–205 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hu, B.: Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 2018. Springer, Berlin (2011)CrossRefGoogle Scholar
  40. 40.
    Jolly, M.S.: Explicit construction of an inertial manifold for a reaction diffusion equation. J. Differ. Equ. 78, 220–261 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ladyzhenskaya, O.A.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  42. 42.
    Matano, H.: Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18, 221–227 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15, 401–454 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Matano, H.: Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation. J. Fac. Sci. Univ. Tokyo Sec. IA 29, 401–441 (1982)zbMATHGoogle Scholar
  45. 45.
    Matano, H., Nakamura, K.-I.: The global attractor of semilinear parabolic equations on \({S^1}\). Discr. Contin. Dyn. Syst. 3, 1–24 (1997)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Mallet-Paret, J.: Morse decompositions for delay-differential equations. J. Difer. Equ. 72, 270–315 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Oliva, W.: Stability of Morse–Smale maps, vol. 1. Technical report, Department of Applied mathematics, IME-USP (1983)Google Scholar
  48. 48.
    Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. An Introduction. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  49. 49.
    Palis, J., Smale, S.: Structural Stability Theorems. Global Analysis. Proceedings of Symposia in Pure Mathematics. AMS, Providence (1970)zbMATHGoogle Scholar
  50. 50.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  51. 51.
    Poláčik, P.: Personal communication (2016)Google Scholar
  52. 52.
    Raugel, G.: Global attractors. In: Fiedler, B. (ed.) Handbook of Dynamical Systems 2. pp. 885–982. Elsevier, Amsterdam (2002)Google Scholar
  53. 53.
    Rocha, C.: Properties of the attractor of a scalar parabolic PDE. J. Dyn. Differ. Equ. 3, 575–591 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  55. 55.
    Sturm, C.: Sur une classe d’équations à différences partielles. J. Math. Pure Appl. 1, 373–444 (1836)Google Scholar
  56. 56.
    Tanabe, H.: Equations of Evolution. Pitman, Boston (1979)zbMATHGoogle Scholar
  57. 57.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  58. 58.
    Wolfrum, M.: Geometry of heteroclinic cascades in scalar parabolic differential equations. J. Dyn. Differ. Equ. 14, 207–241 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Equ. 4, 17–22 (1968)MathSciNetzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2017

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany
  2. 2.Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations