Advertisement

Group abstraction for assisted navigation of social activities in intelligent environments

  • Thomas Given-Wilson
  • Axel Legay
  • Sean Sedwards
  • Olivier Zendra
Original Article

Abstract

The ACANTO project is developing robotic assistants to aid the confidence and recovery of older adults. A key requirement of these assistants is aiding with navigation in complex and potentially chaotic environments. Prior work has addressed this for a single user, using a single robotic assistant in an intelligent environment. However, for therapeutic purposes, ACANTO supports social groups and group activities. ACANTO’s robotic assistants must, therefore, be able to plan the motion of groups of older adults walking together. This requires an efficient navigation solution that can handle large numbers of users and that can operate rapidly on embedded computing devices. To increase user confidence, the solution must encourage group cohesion without trying to impose its own rigid structure; it must try to maintain the natural (de facto) group structure despite unpredictable behaviours and environmental conditions. Our on-the-fly group motion planner addresses these challenges by: using intelligent environment information to develop behavioural traces, clustering traces to determine groups, constructing a predictive model of the groups as a whole, and finding an optimal suggested trajectory using statistical model checking. In this work, we describe our proposed approach in detail and validate some of its novel aspects on the ETH Zürich pedestrian motion dataset.

Keywords

Assisted living Intelligent environments Confidence Group motion planning Therapeutic group activities 

References

  1. 1.
    ACANTO project web site. http://www.ict-acanto.eu/, October 2017
  2. 2.
    Alahi A, Goel K, Ramanathan V, Robicquet A, Li F, Savarese S (2016) Social LSTM: human trajectory prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp 961–971Google Scholar
  3. 3.
    Andreetto M, Divan S, Fontanelli D, Palopoli L (2017) Path following with authority sharing between humans and passive robotic walkers equipped with low-cost actuators. IEEE Robot Autom Lett 2(4):2271–2278CrossRefGoogle Scholar
  4. 4.
    Arthur D, Vassilvitskii S (2007) k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics. pp 1027–1035Google Scholar
  5. 5.
    Baier C, Katoen J-P (2008) Principles of model checking. MIT Press, CambridgezbMATHGoogle Scholar
  6. 6.
    Bennewitz M, Burgard W, Thrun S (2002) Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robot Auton Syst 41(2):89–99CrossRefGoogle Scholar
  7. 7.
    Boyer B, Corre K, Legay A, Sedwards S (2013) PLASMA-lab: a fexible, distributable statistical model checking library. In: Proceedings of QEST, Springer. Vol 805, pp 4160–164Google Scholar
  8. 8.
    Burkard R, Dell’Amico M, Martello S (2009) Assignment problems: revised reprint. Other titles in applied mathematics. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  9. 9.
    Čáp M, Novák P, Kleiner A, Seleckỳ M (2015) Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans Autom Sci Eng 12(3):835–849CrossRefGoogle Scholar
  10. 10.
    Cáp M, Novák P, Seleckỳ M, Faigl J, Vokffnek J (2013) Asynchronous decentralized prioritized planning for coordination in multi-robot system. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE. pp 3822–3829Google Scholar
  11. 11.
    Colombo A, Fontanelli D, Legay A, Palopoli L, Sedwards S (2013) Motion planning in crowds using statistical model checking to enhance the social force model. In: Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, December 10–13, 2013, Firenze, Italy, IEEE. pp 3602–3608Google Scholar
  12. 12.
    DALi project web site. http://www.ict-dali.eu/dali, September 2017
  13. 13.
    David F (2003) Map-based navigation in mobile robots: I. A review of localization strategies. Cogn Syst Res 4:243–282CrossRefGoogle Scholar
  14. 14.
    Desaraju VR, How JP (2012) Decentralized path planning for multi-agent teams with complex constraints. Auton Robot 32(4):385–403CrossRefGoogle Scholar
  15. 15.
    ETH Zürich BIWI walking pedestrians open dataset web site. http://www.vision.ee.ethz.ch/datasets/, October 2017
  16. 16.
    Farina F, Fontanelli D, Garulli A, Giannitrapani A, Prattichizzo D (2016) When Helbing Meets Laumond: The Headed Social Force Model. In: Proc. IEEE Int. Conf. on Decision and Control (CDC), Las Vegas, Nevada, US, Dec. 2016. IEEE, pp 3548–3553,Google Scholar
  17. 17.
    Farina F, Fontanelli D, Garulli A, Giannitrapani A, Prattichizzo D (2017) Walking ahead: the headed social force model. PLoS one 12(1):1–23 01CrossRefGoogle Scholar
  18. 18.
    Galindo C, González J, Fernández-Madrigal J-A (2006) Control architecture for human-robot integration: application to a robotic wheelchair. In: IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 36 5:1053–67Google Scholar
  19. 19.
    Ge W, Collins RT, Ruback B (2012) Vision-based analysis of small groups in pedestrian crowds. IEEE Trans Pattern Anal Mach Intell 34(5):1003–1016CrossRefGoogle Scholar
  20. 20.
    Given-Wilson T, Legay A, Sedwards S (2017) Information security, privacy, and trust in social robotic assistants for older adults. In: Tryfonas T (ed.), Human Aspects of Information Security, Privacy and Trust - 5th International Conference, HAS 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, volume 10292 of Lecture Notes in Computer Science, Springer. pp 90–109Google Scholar
  21. 21.
    Helbing D, Farkas I, Molnár P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, HeidelbergGoogle Scholar
  22. 22.
    Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490CrossRefGoogle Scholar
  23. 23.
    Helbing D, Farkas IJ, Vicsek T (2000) Freezing by heating in a driven mesoscopic system. Phys Rev Lett 84:1240–1243CrossRefzbMATHGoogle Scholar
  24. 24.
    Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286CrossRefGoogle Scholar
  25. 25.
    Hérault T, Lassaigne R, Magniette F, Peyronnet S (2004) Approximate probabilistic model checking. In: Verification, Model Checking, and Abstract Interpretation (VMCAI 2004), Springer. vol 2937 of LNCS, pp 73–84Google Scholar
  26. 26.
    Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-logic-based reactive mission and motion planning. IEEE Trans Rob 25(6):1370–1381CrossRefGoogle Scholar
  27. 27.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Log Q 2(1–2):83–97MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297Google Scholar
  29. 29.
    Mamei M, Zambonelli F (2005) Physical deployment of digital pheromones through rfid technology. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pp 281–288. IEEEGoogle Scholar
  30. 30.
    Mo H, Xu L (2015) Research of biogeography particle swarm optimization for robot path planning. Neurocomputing 148:91–99CrossRefGoogle Scholar
  31. 31.
    Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot swarm. Swarm Intell 2(1):1–23CrossRefGoogle Scholar
  32. 32.
    O’Hara KJ, Balch TR (2007) Pervasive sensor-less networks for cooperative multi-robot tasks. In: Distributed Autonomous Robotic Systems 6, Springer. pp 305–314Google Scholar
  33. 33.
    Okamoto M (1959) Some inequalities relating to the partial sum of binomial probabilities. Ann Inst Stat Math 10:29–35MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Parisi DR, Gilman M, Moldovan H (2009) A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A 388(17):3600–3608CrossRefGoogle Scholar
  35. 35.
    PLASMA-lab SMC library web site. http://project.inria.fr/plasma-lab, October 2017
  36. 36.
    Poncela A, Urdiales C, Pérez EJ, Hernández FS (2009) A new efficiency-weighted strategy for continuous human/robot cooperation in navigation. IEEE Trans Syst Man Cybern Part A 39(3):486–500CrossRefGoogle Scholar
  37. 37.
    Salem M, Lakatos G, Amirabdollahian F, Dautenhahn K (2015) Would you trust a (faulty) robot?: Effects of error, task type and personality on human-robot cooperation and trust. In: Adams JA, Smart WD, Mutlu B, Takayama L (eds.), Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2015, Portland, OR, USA, March 2-5, 2015, ACM. pp 141–148Google Scholar
  38. 38.
    Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356CrossRefGoogle Scholar
  39. 39.
    Vavrinec M, Schaefer M (2015) Prioritized planning for road vehicles coordination. In: 19th International student conference on electrical engineering (POSTER 2015), Prague, 14 May 2015Google Scholar
  40. 40.
    Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Stat 16(2):117–186MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Younes H, Simmons R (2002) Probabilistic verification of discrete event systems using acceptance sampling. In: CAV, Springer. vol 2404, pp 23–39Google Scholar
  42. 42.
    Zhang Y, Gong D-W, Zhang J-H (2013) Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103:172–185CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inria, Campus universitaire de BeaulieuRennesFrance
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations