Tropical Plant Pathology

, Volume 44, Issue 6, pp 511–518 | Cite as

Analyses of orthotospovirus populations and dispersion under different environmental conditions in Brazil and in the Dominican Republic

  • Reina T. Martínez
  • Mariana M. S. de Almeida
  • Rosalba Rodriguez
  • Xiomara Cayetano
  • Athos S. de Oliveira
  • João M. F. Silva
  • Fernando L. Melo
  • Renato O. ResendeEmail author
Original Article


Orthotospoviruses (genus Orthotospovirus, family Tospoviridae) are amongst the most devastating plant viruses worldwide, causing severe damage to many economically important vegetable crops, such as tomato and sweet pepper. Monitoring virus populations is an important step for estimating virus damage and epidemiology, and gaining insights into the adaptation processes undergone by orthotospoviruses. Here, we studied the orthotospovirus populations infecting vegetable crops in Brazil and the Dominican Republic, including species diversity, genome comparison and phylogenetic analyses. Comparisons of virus populations showed that in Brazil, which is considered a center of orthotospovirus diversity, groundnut rinspot virus (GRSV) is prevalent, infecting 41% of the plants, whereas tomato spotted wilt virus (TSWV) and tomato chlorotic spot virus (TCSV) were present in 4% and 9% of the samples, respectively. In the Dominican Republic, which can be considered an environment with low orthotospovirus diversity, 55% of the samples were infected with TSWV, 11% showed TCSV infection and no GRSV was detected. The occurrence of mixed infection was low in Brazil, at only 5%, but no mixed infection was detected in the Dominican Republic. The low rates of mixed infections may prevent the emergence of genomes resulting from reassortment. Indeed, no reassortant viruses were detected in either country, except for TCSV, recently proposed as representing a reassortant orthotospovirus species.


Orthotospoviruses Diversity Evolution Ecology 



This work was supported by a grant from the Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico (FONDOCYT) from the Dominican Republic and grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Capes (Conselho de Aperfeiçoamento de Pessoal de Nível Superior) and FAP-DF (Fundação de Apoio à Pesquisa do Distrito Federal) from Brazil.

Author contributions

R.T.M and R.O.R. designed and supervised the study. R. T. M., M.M.S.d.A., R.R., X.C. and A.S.d.O. performed sample preparation and executed the experimental work. M.M.S.d.A., R.T.M. and F.L.M. performed data analyses. R.T.M and R.O.R wrote the manuscript. All authors revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

40858_2019_307_MOESM1_ESM.pdf (260 kb)
ESM 1 (PDF 259 kb)


  1. Adkins S, Quadt R, Choi TJ, Ahlquist P, German T (1995) An RNA-dependent RNA polymerase activity associated with virions of Tomato spotted wilt virus, a plant- and insect-infecting bunyavirus. Virology 207:308–311CrossRefGoogle Scholar
  2. Almeida MMS, Orílio AF, Melo FL, Rodriguez R, Feliz A, Cayetano X, Martínez RT, Resende RO (2014) The first report of Tomato chlorotic spot virus (TCSV) infecting long beans and chili peppers in the Dominican Republic. Plant Disease 98:1285. CrossRefPubMedGoogle Scholar
  3. Avila, AC, Lima, MF, Resende, RO, Pozzer, L, Ferraz, E, Maranhao, EA, Candeia, JÁ, Costa, ND (1996) Identificacao de tospovirus em hortalicas no submedio São Francisco utilizando Das-Elisa e Dot-Elisa. Fitopatologia Brasileira, 21:503–508Google Scholar
  4. Chávez-Calvillo G, Contreras-Paredes CA, Mora-Macias J, Noa-Carrazana JC, Serrano-Rubio AA, Dinkova TD, Carrillo-Tripp M, Silva-Rosales L (2016). Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489:179–91CrossRefGoogle Scholar
  5. De Oliveira AS, Melo FL, Inoue-Nagata AK, Nagata T, Kitajima EW, Resende RO (2012) Characterization of Bean necrotic mosaic virus: a member of a novel evolutionary lineage within the genus Tospovirus. PLoS One 7:e38634CrossRefGoogle Scholar
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797CrossRefGoogle Scholar
  7. García-Cano E, Resende OR, Fernández-Muñoz R, Moriones E (2006) Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96:1263–1269CrossRefGoogle Scholar
  8. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307–321CrossRefGoogle Scholar
  9. Kormelink R, Storms M, Vanlent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65CrossRefGoogle Scholar
  10. Londoño A, Capobianco H, Zhang S, Polston JE (2012) First record of Tomato chlorotic spot virus in the USA. Tropical Plant Pathology 37:333–338CrossRefGoogle Scholar
  11. Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Molecular Plant-Microbe Interactions 20:547–558CrossRefGoogle Scholar
  12. Martínez RT, Poojari S, Tolin SA, Cayetano X, Naidu RA (2013) First report of Tomato spotted wilt virus in peppers and tomato in the Dominican Republic. Plant Disease 98:163. CrossRefGoogle Scholar
  13. Martínez RT, de Almeida MMS, Rodriguez R, de Oliveira AS, Melo FL, Resende RO (2018) Identification and genome analysis of Tomato chlorotic spot virus and dsRNA viruses from coinfected vegetables in the Dominican Republic by high-throughput sequencing. Virology Journal 15:24–30CrossRefGoogle Scholar
  14. Mavrič I (2001) First report of Tomato spotted wilt virus and Impatiens necrotic spot virus in Slovenia. Plant Disease 12:1288–1288CrossRefGoogle Scholar
  15. Nagata T, Avila AC, Tavares PC, Barbosa C, Juliatti FC, Kitajima EW (1995) Occurrence of different tospoviruses in six states of Brazil. Tropical Plant Pathology 20:90–95Google Scholar
  16. Nagata T, Almeida ACL, Resende RO, Avila AC (2004) The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology, 53: 136-140CrossRefGoogle Scholar
  17. Nuez F, Gil OR, Costa J (2003) El cultivo de pimientos, chiles y ajíes. Ediciones Mund-Prensa. Reimpresión. España. 607 pGoogle Scholar
  18. Pappu HR, Jones RA, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research 141:219–236CrossRefGoogle Scholar
  19. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist KA, Schmaljohn CS, Tesh RB (2012) Family – Bunyaviridae. Virus taxonomy: classification and nomenclature of viruses. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (Eds) Ninth Report of the International Committee on Taxonomy of Viruses. San Diego. pp. 725–741Google Scholar
  20. Resende RO, Pozzer L, Nagata T, Bezerra IC, Kitajima EW, Avila AC (1996) New tospoviruses found in Brazil. Acta Horticulturae (431):78–89Google Scholar
  21. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12:938–954CrossRefGoogle Scholar
  22. Silva J, de Oliveira AS, de Almeida MMS, Kormelink R, Nagata T, Resende RO (2019) Tomato chlorotic spot virus (TCSV) putatively incorporated a genomic segment of Groundnut ringspot virus (GRSV) upon a reassortment event. Viruses 11:187–194CrossRefGoogle Scholar
  23. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters 532:75–79CrossRefGoogle Scholar
  24. Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B (2011). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology 92:961–973CrossRefGoogle Scholar
  25. Webster CG, Reitz SR, Perry KL, Adkins SA (2011) A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413:216–225CrossRefGoogle Scholar
  26. Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC, McAvoy E, Turechek WW, Marshall SH, Tantiwanich Y, McGrath MT, Daughtrey ML, Adkins S (2015) Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology 105:388–398CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2019

Authors and Affiliations

  • Reina T. Martínez
    • 1
  • Mariana M. S. de Almeida
    • 2
  • Rosalba Rodriguez
    • 3
  • Xiomara Cayetano
    • 1
  • Athos S. de Oliveira
    • 2
  • João M. F. Silva
    • 2
  • Fernando L. Melo
    • 2
  • Renato O. Resende
    • 2
    Email author
  1. 1.Universidad Autónoma de Santo Domingo - UASD and Instituto Dominicano de Investigaciones Agropecuarias y Forestales – IDIAFSanto DomingoDominican Republic
  2. 2.Departamento de Biologia CelularUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Ministerio de AgriculturaSanto DomingoDominican Republic

Personalised recommendations