Advertisement

Tropical Plant Pathology

, Volume 44, Issue 6, pp 533–540 | Cite as

Phenotypic and genotypic characterization of single isolate-derived monoascospore strains of Sclerotinia sclerotiorum from common bean

  • Mariana Junqueira de Abreu
  • Monik Evelin Leite
  • Alex Naves Ferreira
  • Elaine Aparecida de SouzaEmail author
Short Communication

Abstract

White mold is a highly destructive disease caused by Sclerotinia sclerotiorum, a polyphagous fungus that infects several hosts including common bean grown that is widely cultivated in Brazil. The pathogenic populations are known to exhibit genetic variability but studies rarely used single ascospore-derived strains. In this study, 12 monoascospore strains originated from a same isolate (UFLA 54), but from different apothecia, were compared among them and with the mother strain with regards: days to first sclerotium formation, mycelial growth rate mycelial compatibility groups, microsatellite markers and mating type locus (MAT1–1 and MAT1–2). Their pathogenicity was assessed on three common bean lines. Cluster analysis of growth rates data separated UFLA 54 from all monoascospore strains, which shared same alleles in the microsatellite locus. Inversion of MAT1–1 region was found for both UFLA 54 and half of monoascospore strains. Aggressiveness of the monoascospore strains was not consistent across common bean lines. Our study reveals significant variability of S. sclerotiorum at the single isolate level.

Keywords

Phaseolus vulgaris White mold Aggressiveness Morphological traits 

Notes

Acknowledgements

Authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for scholarship and financial support.

References

  1. Abreu MJ, Souza EA (2015) Investigation of Sclerotinia sclerotiorum strains variability in Brazil. Genet Mol Res 14:6879–6896PubMedCrossRefPubMedCentralGoogle Scholar
  2. Amselem J,Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:1–27PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atallah ZK, Larget B, Chen X, Johnson DA (2004) High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington state. Phytopathology 94:737–742PubMedCrossRefPubMedCentralGoogle Scholar
  4. Attanayake RN, Carter PA, Jiang D, del Río-Mendoza L, Chen W (2013) Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 103:750–761PubMedCrossRefPubMedCentralGoogle Scholar
  5. Attanayake RN, Xu L, Chen W (2019) Sclerotinia sclerotiorum populations: clonal or recombining? Tropic Plant Pathol 44:23–31CrossRefGoogle Scholar
  6. Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R (2011) Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 6:e21476PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  8. Casela CR, Ferreira AS, Santos FG (2001) Differences in competitive ability among races of Colletotrichum graminicola in mixtures. Fitopatol Bras 26:217–220CrossRefGoogle Scholar
  9. Chen RS, McDonald BA (1996) Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics 142:1119–1127PubMedPubMedCentralGoogle Scholar
  10. Chilipa LNK, Lungu DM, Tembo L (2016) Multiple race inoculation as an option in breeding for resistance to C. lindemuthianum in common beans. J Agric Crops 2:45–50Google Scholar
  11. Chitrampalam P, Pryor BM (2015) Characterization of mating type (MAT) alleles differentiated by a natural inversion in Sclerotinia minor. Plant Pathol 64:911–920CrossRefGoogle Scholar
  12. Chitrampalam P, Inderbitzin P, Maruthachalam K, Wu BM, Subbarao KV (2013) The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PLoS One 8:1–20CrossRefGoogle Scholar
  13. Chitrampalam P, Qiu C, Aldrich-Wolfe L, Leng Y, Zhong S, Nelson B (2015) Prevalence of inversion positive and inversion negative mating type (MAT) alleles and MAT heterokaryons in Sclerotinia sclerotiorum in the United States. Botany 93:497–505CrossRefGoogle Scholar
  14. Cruz CD (2013) GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum 35:271–276Google Scholar
  15. Danielson GA, Nelson BD, Helms TC (2004) Effect of Sclerotinia stem rot on yield of soybean inoculated at different growth stages. Plant Disease 88: 297–300PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ekins M, Aitken EA, Coulter KC (2006) Homothallism in Sclerotinia minor. Mycol Res 110:1193–1199PubMedCrossRefGoogle Scholar
  17. Ekins MG, Hayden HL, Aitken EAB, Goulter KC (2011) Population structure of Sclerotinia sclerotiorum on sunflower in Australia. Australas Plant Pathol 40:99–108CrossRefGoogle Scholar
  18. Falleiros MO, Mota SF, Ferreira AN, Souza EA (2018) Mixture of Colletotrichum lindemuthianum races in anthracnose resistance screening and its implication for common bean breeding. Tropic Plant Pathol 43:271–277CrossRefGoogle Scholar
  19. Glass NL, Jacobsen D, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycetes. Annu Rev Genet 34:165–186PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gomes EV, Do Nascimento LB, De Freitas MA, Nasser LC, Petrofeza S (2011) Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. J Phytopathol 159:94–99CrossRefGoogle Scholar
  21. Hoffman DD, Hartman GL, Mueller DS, Leitz RA, Nickell CD, Pedersen WL (1998) Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Dis 82:826–829PubMedCrossRefGoogle Scholar
  22. Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diverged fungus. Nature 451:193–197PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jaccoud Filho DS, Manosso Neto MO, Vrisman CM, Henneberg L, Grabicoski EMG, Pierre MLC, Berger Neto A, Sartori FF, Demarch VB, Rocha CH (2010) Análise, Distribuição e Quantificação do "Mofo Branco" em Diferentes Regiões Produtoras do Estado do Paraná: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO CENTRAL DO BRASIL, 31., 2010, DF. Brasília. Resumos... Brasília: Embrapa-Soja, 226-228p. Google Scholar
  24. Kamvar ZN, Everhart SE (2019) Something in the agar does not compute: on the discriminatory power of mycelial compatibility in Sclerotinia sclerotiorum. Tropic Plant Pathol 44:32–40CrossRefGoogle Scholar
  25. Kull LS, Pedersen WL, Palmquist D, Hartman GL (2004) Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Dis 88:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lamichhane JR, Venturi V (2015) Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science 6:article385Google Scholar
  27. Lehner MS, Mizubuti ESG (2017) Are Sclerotinia sclerotiorum populations from the tropics more variable than those from subtropical and temperate zones? Tropic Plant Pathol 42:61–69CrossRefGoogle Scholar
  28. Lehner MS, Paula Júnior TJ, Silva RA, Vieira RF, Carneiro JES, Mizubuti ESG (2014) Sclerotia morphology traits and mycelial growth rate are not informative variables for population studies of Sclerotinia sclerotiorum. Tropic Plant Pathol 39:471–477CrossRefGoogle Scholar
  29. Lehner MS, Paula Júnior TJ, Hora Júnior BT, Teixeira H, Vieira RF, Carneiro JES, Mizubuti ESG (2015) Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais state, Brazil, at regional, local and micro-scales. Plant Pathol 64:921–931CrossRefGoogle Scholar
  30. Lehner MS, Paula Júnior TJ, Mizubuti ESG (2016a) Does hyphal-tip ensure the same allelic composition at SSR Loci as monosporic isolates of Sclerotinia sclerotiorum? J Phytopathol 164:417–420CrossRefGoogle Scholar
  31. Lehner MS, Lima RC, Carneiro JES, Paula Júnior TJ, Vieira RF, Mizubuti ESG (2016b) Similar aggressiveness of phenotypically and genotypically distinct isolates of Sclerotinia sclerotiorum. Plant Dis 100:360–366PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lehner MS, Paula Júnior TJ, Vieira RF, Lima RC, Soares BA, Silva RA (2016c) Reaction of sources of resistance to white mold to microsatellite haplotypes of Sclerotinia sclerotiorum. Sci Agric 73:184–188CrossRefGoogle Scholar
  33. Lehner MS, De Paula Junior TJ, Del Ponte EM, Mizubuti ESG, Pethybridge SJ (2017) Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS One 12:1–14CrossRefGoogle Scholar
  34. Lehner MS, Silva RA, Paula Júnior TJ, Carneiro JES, Mizubuti ESG (2019) The population of Sclerotinia sclerotiorum affecting common bean in Brazil is structured by mycelial compatibility groups. Tropic Plant Pathol 44:41–52CrossRefGoogle Scholar
  35. Leite ME, Santos JB, Ribeiro PM Jr, Souza DA, Lara LAC, Resende MLV (2014) Biochemical responses associated with common bean defence against Sclerotinia sclerotiorum. Eur J Plant Pathol 138:391–404CrossRefGoogle Scholar
  36. Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31:2336–2342CrossRefGoogle Scholar
  37. Malvárez G, Carbone I, Grünwald NJ, Subbarao KV, Schafer M, Kohn LM (2007) New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97:470–483PubMedCrossRefPubMedCentralGoogle Scholar
  38. Mert-Türk F, Ipek M, Mermer D, Nicholson P (2007) Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Çanakkale Province of Turkey. J Phytopathol 155:182–187CrossRefGoogle Scholar
  39. Milgroom MG (1996) Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34:457–477PubMedCrossRefGoogle Scholar
  40. Oliveira JA (1991) Efeito do tratamento fungicida em sementes no controle de tombamento de plântulas de pepino (Cucumis sativus L.) e pimentão (Capsium annum L.). Thesis, Federal University of Lavras. LavrasGoogle Scholar
  41. Otto-Hanson L, Steadman JR, Higgins R (2011) Variation in Sclerotinia sclerotiorum bean isolates from multisite resistance screening locations. Plant Dis 95:1370–1377PubMedCrossRefPubMedCentralGoogle Scholar
  42. Pannullo A, Kamvar ZN, Miorini TJJ, Steadman JR, Everhart SE (2019) Genetic variation and structure of Sclerotinia sclerotiorum populations from soybean in Brazil. Tropic Plant Pathol 44:53–64CrossRefGoogle Scholar
  43. Paula Junior TJ, Vieira RF, Teixeira H, Carneiro JES, Lehner MS, Lima RC, Moda-Cirino V, Souza EA, Santos JB (2012) Mofo-branco. In: Melhoramento Genético do feijoeiro-comum e prevenção de doenças. EPAMIG, pp 83–110Google Scholar
  44. Petzoldt R, Dickson MH (1996) Straw test for resistance to white mold in beans. Annu Rep Bean Improv Coop 39:142–143Google Scholar
  45. R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: www.R-project.org
  46. Russel PF, Rao TR (1940) On habitat and association of species of Anopheline larvae in south-eastern Madras. J Malaria Inst India 3:153–178Google Scholar
  47. Sexton AC, Howlett BJ (2004) Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr Genet 46:357–365PubMedCrossRefPubMedCentralGoogle Scholar
  48. Silva PH, Santos JB, Lima IA, Lara LAC, Alves FC (2014) Reaction of common bean lines and aggressiveness of Sclerotinia sclerotiorum isolates. Genet Mol Res 13:9138–9151PubMedCrossRefPubMedCentralGoogle Scholar
  49. Singh SP, Schuwartz HF, Steadman JR (2014) A new scale for white mold disease rating for the common bean cut-stem method of inoculation in the greenhouse. Annu Rep Bean Improv Coop 57:231–232Google Scholar
  50. Sirjusingh C, Kohn LM (2001) Characterization of microsatellites in the fungal plant pathogen Sclerotinia sclerotiorum. Mol Ecol Notes 1:267–269CrossRefGoogle Scholar
  51. Souza BO, Souza EA, Mendes-Costa MC (2007) Determinação da variabilidade em isolados de Colletotrichum lindemuthianum por meio de marcadores morfológicos e culturais. Ciência e Agrotecnologia 31:1000–1006CrossRefGoogle Scholar
  52. Willbur JF, McCaghey M, Kabbage M, Smith DL (2019) An overview of the Sclerotinia sclerotiorum pathosystem in soybean: impact, fungal biology, and current management strategies. Tropic Plant Pathol 44:3–11CrossRefGoogle Scholar
  53. Xu L, Jardini TM, Chen W (2016) Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum. Sci Rep 6:27083–27083PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2019

Authors and Affiliations

  • Mariana Junqueira de Abreu
    • 1
  • Monik Evelin Leite
    • 1
  • Alex Naves Ferreira
    • 1
  • Elaine Aparecida de Souza
    • 1
    Email author
  1. 1.Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations