Advertisement

Tropical Plant Pathology

, Volume 43, Issue 6, pp 506–513 | Cite as

Effect of pathogen concentrations and period of leaf wetness on orange rust severity in Brazilian sugarcane cultivars

  • Alfredo S. Urashima
  • Juliana Bombecini
  • Juliana Uzan
  • Rodrigo Gazaffi
Original Article
  • 56 Downloads

Abstract

The most important management strategy for orange rust of sugarcane (Puccinia kuehnii) is the use of resistant cultivars. Nevertheless, canes with intermediate resistance are still grown over large areas in the Brazilian sugarcane industry, with varying degrees of disease severity. Factors governing the severity of orange rust in these crops are largely unknown. Therefore, the present work aimed to examine the influence of pathogen concentration, period of leaf wetness, and urediniopore survival on sugarcane residue on disease severity. Thirty-day-old plants of cultivars RB72454, RB855156, RB867515, RB92579, RB935744, RB975201, SP81–3250, and SP89–1115 were inoculated with 50 ml of spore suspension with varying urediniospore concentrations (from 1.101 to 107 spores.ml−1) or period of leaf wetness (12, 24, and 48 h, pathogen concentration 1.106 spores.ml−1). Reaction of cultivars was evaluated by assessing leaf area affected. Survival of urediniospores was examined on sugarcane residues at 0, 10, 15, 20 days after separation from the cane plant. Only RB72454, RB92579, and RB855156, classified as susceptible or intermediate, exhibited higher disease levels as pathogen concentration increased. Extended periods of leaf wetness only influenced susceptible/intermediate cultivars, where higher severity occurred with longer period of leaf wetness. Viability of urediniospores collected in winter always had a greater loss of viability compared to spring but both season harbored viable urediniospores on 20-day-old sugarcane residues, suggesting they potentially could play a role in initiation of disease epidemics.

Keywords

Saccharum spp. Puccinia kuehnii Resistance Disease 

Notes

Acknowledgements

J. Bombecini thanks FAPESP for financial support (IC 2011/19673-0 and BEPE 2012/07157-0).

References

  1. Amorim L, Bergamin Filho A, Sanguino A, Cardoso CON, Moraes VA, Fernandes CR (1987) Metodologia de avaliação de ferrugem da cana-de-açúcar (Puccinia melanocephala). Boletim Técnico Copersucar: São Paulo 39:13–16Google Scholar
  2. Araujo KL, Canteri MG, Gilio TAS, Neubauer RA, Sanches PB, Sumida CH, Giglioti EA (2013) Resistência genotípica e monitoramento da favorabilidade para ocorrência da ferrugem alaranjada da cana-de-açúcar. Summa Phytopathologica 39:271–275CrossRefGoogle Scholar
  3. Barbasso D, Jordão H, Maccheroni W, Boldini J, Sanguino A (2010) First report of Puccinia kuehnii, causal agent of orange rust of sugarcane, in Brazil. Plant Disease 94:1170CrossRefGoogle Scholar
  4. Bombecini J, Zavaglia AC, Urashima AS (2011) Qual a relação entre a colheita mecanizada e a ferrugem alaranjada da cana-de-açúcar? Tropical Plant Pathology 36:774Google Scholar
  5. Bombecini J, Gonçalves CRNCB, Ascencio I, Urashima AS (2012) Resistance of sugarcane varieties to Puccinia kuehnii in Brazil. Phytopathology 102:S4.13CrossRefGoogle Scholar
  6. Canellas LP, Busato JG, Dobbss LB, Baldotto MA, Rumjanek VM (2010) Soil organic matter and nutrient pools under long-term non-burning management of sugar cane. European Journal of Soil Science 61:375–383CrossRefGoogle Scholar
  7. Chapola RG, Hoffmann HP, Bassinelo AI, Fernandes AR Jr, Brugnaro C, Rosa JRBF, Vieira MAS, Schiavinato SR (2010) Censo varietal de cana-de-açúcar de 2009 dos estados de São Paulo, Mato Grosso e Mato Grosso do Sul. STAB 28:34–37Google Scholar
  8. Chapola RG, Fernandes AR Jr, Cursi DE, Hoffmann HP (2016a) Censo de variedades de cana-de-açúcar nos estados de São Paulo e Mato Grosso do Sul em 2015. Stab 34:37–39Google Scholar
  9. Chapola RG, Hoffmann HP, Massola NS Jr (2016b) Reaction of sugarcane varieties to orange rust (Puccinia kuehnii) and methods for rapid identification of resistant genotypes. Tropical Plant Pathology 41:139–146CrossRefGoogle Scholar
  10. Cherubin N (2012) Bom para umas, ruim para outras. IdeaNews: Cana and Indústrias 142:20–30Google Scholar
  11. Companhia Nacional de Abastecimento – CONAB (2017) Acompanhamento da safra brasileira: cana-de-açúcar. Terceiro levantamento, Dezembro/2017. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_01_08_09_08_38_cana_dezembro_novo.pdf. Accessed on January 27, 2018
  12. Comstock JC, Sood SG, Glynn NC, McKemy JM, Castlebury LA (2008) First report of Puccinia kuehnii, causal agent of orange rust of sugarcane, in the United States and western hemisphere. Plant Disease 92:175CrossRefGoogle Scholar
  13. Cox, DR, Reid, N (2000). The theory of the design of experiments. Chapman and Hall/CRC; 1 edition. ISBN: 978-1584881957. 336pGoogle Scholar
  14. Dinardo-Miranda LL, Silva MA, Landell MGA, Campana MP (1998) Reação de clones IAC de cana-de-açúcar à ferrugem. Summa Phytopathologica 24:34–36Google Scholar
  15. Fredo CE, Caser DV, Sachs RC, Olivette MPA, Veiga Filho AA (2015) Mecanização na colheita da cana–de-açúcar atinge 84,8% na safra agrícola 2013/14. Analises e indicadores do agronegócio 10, no. 2. 5 pp. Available at: http://www.iea.sp.gov.br/ftpiea/AIA/AIA-12-2015.pdf. Accessed January 27, 2018
  16. Magarey RC, Willcox T, Croft B, Cordingley A (2001) Orange rust, a major pathogen affecting crops of Q124 in Queensland in 2000. Proceedings of the Australian Society Sugar Cane Technology 23:274–280Google Scholar
  17. Magarey RC, Neilson WA, Bull JI (2004) The effect of orange rust on sugarcane yield in breeding selection trials in Central Queensland: 1999-2001. Proceedings of the Australian Society Sugar Cane Technology 26:6pGoogle Scholar
  18. Mallaiah KV, Rao AS (1982) Aerial dissemination of urediniospores of groundnut rust. Transactions of the British Mycological Society 78:21–28CrossRefGoogle Scholar
  19. Moitinho MR, Padovan MP, Panosso AR, La Scala N Jr (2013) Efeito do preparo do solo e resíduo da colheita de cana-de-aúcar sobre emissão de CO2. Revista Brasileira de Ciência do Solo 37:1720–1728CrossRefGoogle Scholar
  20. Panosso AR, Marques J Jr, Milori DMBP, Ferraudo AS, Barbieri DM (2011) Soil CO2 emission and ts relation to soil properties in sagarcane areas under slash-and-burn and green harvest. Soil & Tillage Research 111:190–196CrossRefGoogle Scholar
  21. R Core Team (2015) R: A Language and Environment for Statistical Computing. http://www.R-project.org/
  22. Raizen (2013) Incidência e impactos da ferrugem alaranjada. Available at: http://www.stab.org.br/sem_agroind_stab_2013/incidencia_impactos_ferrugem_alaranjada_unidades_raizen.pdf. Accessed on January 27, 2018
  23. Santos EGD, Chapola RG, Gonçalves RA, Mouta ER, Vieira MAS, Bassinello AI, Hoffmann HP (2008) Censo varietal 2007 de áreas canavieiras da região Centro-Sul. STAB 26:42–46Google Scholar
  24. Steel RGD, Torrie, JH (1960). Principles and procedures of statistics: a biometrical approach. McGraw-hill book company, 2nd edition. 672pGoogle Scholar
  25. UNICA (2015). A bioeletricidade da cana-de-açúcar em números – outubro de 2015. Available at: http://www.unica.com.br/documentos/documentos/bioeletricidade/ Accessed on January 27, 2018

Copyright information

© Sociedade Brasileira de Fitopatologia 2018

Authors and Affiliations

  1. 1.Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências AgrariasUniversidade Federal de São CarlosArarasBrazil
  2. 2.Centro Tecnologia CanavieiraPiracicabaBrazil

Personalised recommendations