Advertisement

Tropical Plant Pathology

, Volume 43, Issue 3, pp 257–262 | Cite as

Phoma destructiva causing blight of tomato plants: a new fungal threat for tomato plantations in Brazil?

  • Adans A. Colmán
  • Janaina L. Alves
  • Meiriele da Silva
  • Robert W. BarretoEmail author
Short Communication

Abstract

Solanum lycopersicum is among the most important crops in Brazil. This crop is affected by a large range of fungal diseases that are recognized as major limitations for tomato production. Recently, plants grown in a greenhouse in Viçosa, Minas Gerais, Brazil, were found to bear severe blight symptoms. A pycnidial coelomycete was repeatedly found in association with necrotic tissues. The fungus had its morphology recognized as equivalent to that of Phoma and related genera. A phylogenetic analysis based on nrDNA (ITS) and partial β-tubulin (TUB) sequences led to the conclusion that the fungus involved was Phoma destructiva. Pathogenicity tests showed that, after 5 days, blight symptoms developed on leaves, flowers and stems of plants belonging to thirteen different tomato varieties tested. This fungal species is mostly known for causing post-harvest tomato rot, which is only regarded as a secondary disease in Brazil. This is in disagreement with the observations made in this work. Here, the disease symptoms caused by the fungus were very severe, fully justifying the scientific name of the pathogen. Under favorable environmental conditions, aggressive strains of P. destructiva, such as the one isolated in this study, may become significant threats to tomato plantations in Brazil.

Keywords

Solanum lycopersicum Coelomycetes Didymellaceae Pycnidial fungi Phylogeny Solanaceae 

Notes

Acknowledgements

The authors wish to thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES for financial support of the work.

References

  1. Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterize Phoma and related pleosporalean genera. Studies in Mycology 65:1–60Google Scholar
  2. Batista MF, Alves MLB (1981) Doenças do tomateiro na região de Manaus. Fitopatologia Brasileira 6:573–574Google Scholar
  3. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Studies in Mycology 82:137–217CrossRefPubMedPubMedCentralGoogle Scholar
  4. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  5. Farr DF, Rossman AY (2016) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Available at: http://nt.ars-grin.gov/fungaldatabases/. Accessed 10 June 2016
  6. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology 61:1323–1330PubMedPubMedCentralGoogle Scholar
  7. Gruyter J, Boerema GH, van der Aa HA (2002) Contributions towards a monograph of Phoma (Coelomycetes)—VI-2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–53Google Scholar
  8. Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2012) Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75:1–36CrossRefPubMedCentralGoogle Scholar
  9. Hepperle D (2011) DNA Dragon 1.4.1 - DNA Sequence Contig Assembler Software. Available at: www.dna-dragon.com. Accessed 16 June 2016
  10. Inouie-Nagata AK, Lopes CA, Reis A, Pereira RB, Quezado-Duval JB, Lima MF (2016) Doenças do Tomateiro. In: Amorim L, Rezende JAM, Bergamin Filho A, Camargo LEA (eds) Manual de Fitopatologia. Vol. 2. Doenças das Plantas Cultivadas. Ceres, São Paulo, pp 697–732Google Scholar
  11. Jones JB, Zitter TA, Momol TM, Miller SA (2014) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. PaulGoogle Scholar
  12. Kimati H, Amorim L, Bergamin Filho A, Camargo LEA, Rezende JAM (2005) Manual de Fitopatologia: Doenças das Plantas Cultivadas, vol 2, 2nd edn. Editora Agronômica Ceres Ltda, São PauloGoogle Scholar
  13. Lopes CA, de Ávila AC (2005) Doenças do tomateiro. Embrapa Hortaliças, BrasíliaGoogle Scholar
  14. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans. pp. 1–8Google Scholar
  15. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are non-orthologous. Molecular Phylogenetics and Evolution 7:103–116CrossRefPubMedGoogle Scholar
  16. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53:793–808CrossRefPubMedGoogle Scholar
  17. Pinho DB, Firmino AL, Pereira OL, Ferreira Junior WG (2012) An efficient protocol for DNA extraction from Meliolales and the description of Meliola centellae sp. nov. Mycotaxon 122:333–345CrossRefGoogle Scholar
  18. Rashid TS, Sijam K, Nasehi A, Kadir J (2016) Occurence of Phoma blight caused by Phoma destructiva on tomato (Solanum lycopersicum) in Malaysia. Plant Disease 100:1241–1242CrossRefGoogle Scholar
  19. Robl D, Thimoteo SS, de Souza GCCF, Beux MR, Dalzoto PR, Pinheiro RL, Pimentel IC (2014) Occurrence of Candida orthopsilosis in Brazilian tomato fruits (Lycopersicum esculentum Mill.) Brazilian Journal of Microbiology 45:105–109CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ronquist F, Heulsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sung GH, Sung JM, Hywel Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44:1204–1223CrossRefPubMedGoogle Scholar
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  23. Vale FXR, Jesus Junior WC, Rodrigues FA, Costa H, Souza CA (2007) Manejo de doenças fúngicas em tomateiro. In: da Silva JHL, Vale FXR. (Org.) Tomate: tecnologia de produção. Suprema, Visconde do Rio Branco, pp 159–197Google Scholar
  24. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2017

Authors and Affiliations

  • Adans A. Colmán
    • 1
  • Janaina L. Alves
    • 1
  • Meiriele da Silva
    • 1
  • Robert W. Barreto
    • 1
    Email author
  1. 1.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations