Skip to main content
Log in

Periwinkle proliferation disease associated with 16SrI-B phytoplasma in Mexico

  • Short Communication
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Catharantus roseus, known as periwinkle, is highly susceptible to phytoplasma infection. Periwinkle plants showing proliferation symptoms were detected during 2013–2014 in four geographically distant states in Mexico. The presence of phytoplasmas was confirmed through the amplification of 16S F2nR2 and cpn60 UT sequences from symptomatic plants. Sequencing, phylogenetic analysis and in vitro RFLP revealed that the isolates were ‘Candidatus Phytoplasma asteris’-related strains and members of the 16SrI-B subgroup, confirming the association of this phytoplasma group with periwinkle proliferation disease in Mexico. We also demonstrated that the use of the approximately 550 pb cpn60 universal target sequences allow the differentiation of two 16SrI-B strains, designated here as MePP-Centre, and MePP-South.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bonfield JK, Whitwham A (2010) Gap5 - editing the billion fragment sequence assembly. Bioinformatics 26:1699–1703

  • Caicedo JD, Rivera-Vargas LI, Segarra AE, Davis RE (2015) Detection and molecular characterisation of a group 16SrIX phytoplasma infecting citrus (Citrus sinensis and C. limon), coffee (Coffea arabica), periwinkle (Catharanthus roseus) and tabebuia (Tabebuia heterophylla) in Puerto Rico. Australas Plant Dis Notes 10:28

  • Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JT, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1 H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor DG (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617

    CAS  Google Scholar 

  • Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16SrRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 63:766–776

    Article  CAS  PubMed  Google Scholar 

  • Dumonceaux TJ, Green M, Hammond C, Perez E, Olivier C (2014) Molecular diagnostic tools for detection and differentiation of phytoplasmas based on chaperonin-60 reveal differences in host plant infection patterns. PLoS One 9, e116039

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2012) FAOSTAT, Production. Available at: http://faostat.fao.org/site/567/DesktopDefault.aspx? PageID=567#ancor. Accessed 28 Aug 2015

  • Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasma by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:114–151

    Google Scholar 

  • Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M, Eden-Green S, Dollet M, Dickinson M (2014) ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64:1890–1899

    Article  CAS  PubMed  Google Scholar 

  • Hodgetts J, Crossley D, Dickinson M (2014) Techniques for the maintenance and propagation of phytoplasmas in glasshouse collections of Catharanthus roseus. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols. Humana Press Inc., New York

    Google Scholar 

  • IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  • Lee I-M, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma like organisms. Phytopathology 83:834–842

    Article  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic Mollicutes. Annu Rev Microbiol 54:221–255

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2010) Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia. Afr J Biotechnol 9:2305–2315

    CAS  Google Scholar 

  • Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SNA, Zhao Y (2013) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 63:540–548

    Article  CAS  PubMed  Google Scholar 

  • Olivier CY, Séguin-Swartz G, Hegedus D, Barasubiye T (2006) First report of ‘Candidatus Phytoplasma asteris’-related strains in Brassica rapa in Saskatchewan, Canada. Plant Dis 90:832

    Article  Google Scholar 

  • Pérez-López E, Dumonceaux TJ, Olivier CY, Luna-Rodríguez M (2014) Identification of ‘Candidatus phytoplasma phoenicium’ in periwinkle from Cuba. Rev Mex Fitopatol 32:S47

    Google Scholar 

  • Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ (2016a) The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 66:492–513

    Article  PubMed  Google Scholar 

  • Pérez-López E, Olivier CY, Luna-Rodríguez M, Rodríguez Y, Iglesias LG, Castro-Luna A, Adame-García J, Dumonceaux TJ (2016b) Maize bushy stunt phytoplasma affects native corn at high elevations in southeast Mexico. Eur J Plant Pathol. doi:10.1007/s10658-016-0883-0

    Google Scholar 

  • Saguwara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K, Namba S (2012) Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. J Gen Plant Pathol 78:389–397

    Article  Google Scholar 

  • Santos-Cervantes ME, Chávez-Medina JA, Méndez-Lozano J, Leyva-López NE (2008) Detection and molecular characterization of two little leaf phytoplasma strains associated with pepper and tomato diseases in Guanajuato and Sinaloa, Mexico. Plant Dis 92:1007–1011

    Article  CAS  Google Scholar 

  • Santos-Cervantes ME, Chávez-Medina JA, Acosta-Pardini J, Flores-Zamora GL, Méndez-Lozano J, Leyva-López NE (2010) Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis 94:388–395

    Article  Google Scholar 

  • Smart CD, Schneider B, Blomquist CL, Guerra LJ, Harrison NA, Ahrens U, Lorenz KH, Seemüller E, Kirkpatrick BC (1996) Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl Environ Microbiol 62:2988–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takinami Y, Maejima K, Takahashi A, Keima T, Shiraishi T, Okano Y, Komatsu K, Oshima K, Namba S (2013) First report of ‘Candidatus Phytoplasma asteris’ infecting hydrangea showing phyllody in Japan. J Gen Plant Pathol 79:209–213

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres L, Galdeano E, Docampo D, Conci L (2004) Characterization of an aster yellows phytoplasma associated with Catharanthus little leaf in Argentina. J Plant Pathol 86:209–214

    CAS  Google Scholar 

  • Valiunas D, Jomantiene R, Davis RE (2013) Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny. Int J Syst Evol Microbiol 63:3904–3914

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Davis RE, Wei W, Lee I-M (2015) Should ‘Candidatus Phytoplasma’ be retained within the order Acholeplasmatales? Int J Syst Evol Microbiol 65:1075–1082

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christine Hammond and Jennifer Town for their support in lab work. This work was supported by the Genomic Research and Development Initiative for the shared priority project on quarantine and invasive species. Edel Pérez-López thanks CONACYT for a PhD scholarship (CVU: 517835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edel Pérez-López.

Additional information

Section Editor: Jorge Rezende

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-López, E., Olivier, C.Y., Luna-Rodríguez, M. et al. Periwinkle proliferation disease associated with 16SrI-B phytoplasma in Mexico. Trop. plant pathol. 41, 254–257 (2016). https://doi.org/10.1007/s40858-016-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-016-0093-5

Keywords

Navigation