Advertisement

Tropical Plant Pathology

, Volume 41, Issue 4, pp 254–257 | Cite as

Periwinkle proliferation disease associated with 16SrI-B phytoplasma in Mexico

  • Edel Pérez-López
  • Chrystel Y. Olivier
  • Mauricio Luna-Rodríguez
  • Jacel Adame-García
  • Tim J. Dumonceaux
Short Communication

Abstract

Catharantus roseus, known as periwinkle, is highly susceptible to phytoplasma infection. Periwinkle plants showing proliferation symptoms were detected during 2013–2014 in four geographically distant states in Mexico. The presence of phytoplasmas was confirmed through the amplification of 16S F2nR2 and cpn60 UT sequences from symptomatic plants. Sequencing, phylogenetic analysis and in vitro RFLP revealed that the isolates were ‘Candidatus Phytoplasma asteris’-related strains and members of the 16SrI-B subgroup, confirming the association of this phytoplasma group with periwinkle proliferation disease in Mexico. We also demonstrated that the use of the approximately 550 pb cpn60 universal target sequences allow the differentiation of two 16SrI-B strains, designated here as MePP-Centre, and MePP-South.

Keywords

16SrI-B Candidatus phytoplasma asteris’ Catharanthus cpn60 UT Mexican periwinkle proliferation 

Notes

Acknowledgments

We thank Christine Hammond and Jennifer Town for their support in lab work. This work was supported by the Genomic Research and Development Initiative for the shared priority project on quarantine and invasive species. Edel Pérez-López thanks CONACYT for a PhD scholarship (CVU: 517835).

References

  1. Bonfield JK, Whitwham A (2010) Gap5 - editing the billion fragment sequence assembly. Bioinformatics 26:1699–1703Google Scholar
  2. Caicedo JD, Rivera-Vargas LI, Segarra AE, Davis RE (2015) Detection and molecular characterisation of a group 16SrIX phytoplasma infecting citrus (Citrus sinensis and C. limon), coffee (Coffea arabica), periwinkle (Catharanthus roseus) and tabebuia (Tabebuia heterophylla) in Puerto Rico. Australas Plant Dis Notes 10:28Google Scholar
  3. Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JT, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1 H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410CrossRefPubMedPubMedCentralGoogle Scholar
  4. Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor DG (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617Google Scholar
  5. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16SrRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 63:766–776CrossRefPubMedGoogle Scholar
  6. Dumonceaux TJ, Green M, Hammond C, Perez E, Olivier C (2014) Molecular diagnostic tools for detection and differentiation of phytoplasmas based on chaperonin-60 reveal differences in host plant infection patterns. PLoS One 9, e116039CrossRefPubMedPubMedCentralGoogle Scholar
  7. FAO (2012) FAOSTAT, Production. Available at: http://faostat.fao.org/site/567/DesktopDefault.aspx? PageID=567#ancor. Accessed 28 Aug 2015
  8. Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasma by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:114–151Google Scholar
  9. Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M, Eden-Green S, Dollet M, Dickinson M (2014) ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64:1890–1899CrossRefPubMedGoogle Scholar
  10. Hodgetts J, Crossley D, Dickinson M (2014) Techniques for the maintenance and propagation of phytoplasmas in glasshouse collections of Catharanthus roseus. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols. Humana Press Inc., New YorkGoogle Scholar
  11. IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255CrossRefGoogle Scholar
  12. Lee I-M, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma like organisms. Phytopathology 83:834–842CrossRefGoogle Scholar
  13. Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169CrossRefGoogle Scholar
  14. Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic Mollicutes. Annu Rev Microbiol 54:221–255CrossRefPubMedGoogle Scholar
  15. Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54:1037–1048CrossRefPubMedGoogle Scholar
  16. Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2010) Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia. Afr J Biotechnol 9:2305–2315Google Scholar
  17. Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SNA, Zhao Y (2013) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 63:540–548CrossRefPubMedGoogle Scholar
  18. Olivier CY, Séguin-Swartz G, Hegedus D, Barasubiye T (2006) First report of ‘Candidatus Phytoplasma asteris’-related strains in Brassica rapa in Saskatchewan, Canada. Plant Dis 90:832CrossRefGoogle Scholar
  19. Pérez-López E, Dumonceaux TJ, Olivier CY, Luna-Rodríguez M (2014) Identification of ‘Candidatus phytoplasma phoenicium’ in periwinkle from Cuba. Rev Mex Fitopatol 32:S47Google Scholar
  20. Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ (2016a) The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 66:492–513CrossRefPubMedGoogle Scholar
  21. Pérez-López E, Olivier CY, Luna-Rodríguez M, Rodríguez Y, Iglesias LG, Castro-Luna A, Adame-García J, Dumonceaux TJ (2016b) Maize bushy stunt phytoplasma affects native corn at high elevations in southeast Mexico. Eur J Plant Pathol. doi: 10.1007/s10658-016-0883-0 Google Scholar
  22. Saguwara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K, Namba S (2012) Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. J Gen Plant Pathol 78:389–397CrossRefGoogle Scholar
  23. Santos-Cervantes ME, Chávez-Medina JA, Méndez-Lozano J, Leyva-López NE (2008) Detection and molecular characterization of two little leaf phytoplasma strains associated with pepper and tomato diseases in Guanajuato and Sinaloa, Mexico. Plant Dis 92:1007–1011CrossRefGoogle Scholar
  24. Santos-Cervantes ME, Chávez-Medina JA, Acosta-Pardini J, Flores-Zamora GL, Méndez-Lozano J, Leyva-López NE (2010) Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis 94:388–395CrossRefGoogle Scholar
  25. Smart CD, Schneider B, Blomquist CL, Guerra LJ, Harrison NA, Ahrens U, Lorenz KH, Seemüller E, Kirkpatrick BC (1996) Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl Environ Microbiol 62:2988–2993PubMedPubMedCentralGoogle Scholar
  26. Takinami Y, Maejima K, Takahashi A, Keima T, Shiraishi T, Okano Y, Komatsu K, Oshima K, Namba S (2013) First report of ‘Candidatus Phytoplasma asteris’ infecting hydrangea showing phyllody in Japan. J Gen Plant Pathol 79:209–213CrossRefGoogle Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  28. Torres L, Galdeano E, Docampo D, Conci L (2004) Characterization of an aster yellows phytoplasma associated with Catharanthus little leaf in Argentina. J Plant Pathol 86:209–214Google Scholar
  29. Valiunas D, Jomantiene R, Davis RE (2013) Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny. Int J Syst Evol Microbiol 63:3904–3914CrossRefPubMedGoogle Scholar
  30. Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867CrossRefPubMedGoogle Scholar
  31. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111CrossRefPubMedGoogle Scholar
  32. Zhao Y, Davis RE, Wei W, Lee I-M (2015) Should ‘Candidatus Phytoplasma’ be retained within the order Acholeplasmatales? Int J Syst Evol Microbiol 65:1075–1082CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2016

Authors and Affiliations

  1. 1.Instituto de Biotecnología y Ecología Aplicada (INBIOTECA)Universidad VeracruzanaXalapaMexico
  2. 2.Agriculture and Agri-Food CanadaSaskatoon Research CentreSaskatoonCanada
  3. 3.Laboratorio de Alta Tecnología de Xalapa, Dirección General de InvestigacionesUniversidad VeracruzanaXalapaMexico
  4. 4.Instituto Tecnológico de Úrsulo GalvánTecnológico Nacional de MéxicoÚrsulo GalvánMexico
  5. 5.Department of Veterinary MicrobiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations