Tropical Plant Pathology

, Volume 40, Issue 2, pp 71–76 | Cite as

Biocontrol of gray mold in tomato plants by Clonostachys rosea

  • Álefe V. Borges
  • Rodrigo M. Saraiva
  • Luiz A. Maffia


Greenhouse conditions are favorable to the growth of Botrytis cinerea, and an increase in the occurrence of gray mold caused by this pathogen is therefore expected. Biocontrol using microbial antagonists is one of the approaches to control the pathogen. In previous experiments, Clonostachys rosea isolates suppressed B. cinerea in tomato leaves, but it was not evaluated in wounds caused during pruning, where the pathogen predominantly infects. Here, the efficacy of four C. rosea isolates to control B. cinerea in wounded tomato stems was evaluated. Influence of the following factors on the antagonist’s efficiency were evaluated: i) application time of C. rosea respectively to time for B. cinerea inoculum deposition, ii) conidial concentration of C. rosea, and iii) application of individual isolates versus isolate mixture. Results indicated that the four C. rosea isolates are effective in controlling gray mold, and that they may be applied either individually or as a mixture. The biocontrol efficiency of C. rosea was higher when it was applied 1 day before or simultaneously with the pathogen inoculation at a concentration of 106 conidia/mL- 1, reaching 100 % in stem segments and more than 90 % in whole plants. The antagonist has potential to be used in greenhouse tomato, especially in an integrated management context.


Botrytis cinerea Solanum lycopersicum Antagonist Greenhouse cultivation 



The research was partially funded by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Apoio à Pesquisa do Estado de Minas Gerais).


  1. Chatterton S, Punja ZK (2012) Colonization of geranium foliage by Clonostachys rosea f. catenulate, a biological control agent of Botrytis grey mould. Botany 90:1–10CrossRefGoogle Scholar
  2. Cota LV, Maffia LA, Mizubuti ESG, Macedo PEF, Antunes RF (2008) Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biol Control 46:515–522CrossRefGoogle Scholar
  3. Dik AJ, Koning G, Kohl J (1999) Evaluation of microbial antagonists for biological control of Botrytis cinerea stem infection in cucumber and tomato. Eur J Plant Pathol 105:115–122CrossRefGoogle Scholar
  4. Eden MA, Hill RA, Beresford R, Stewart A (1996) The influence of inoculum concentration, relative humidity, and temperature on infection of greenhouse tomatoes by Botrytis cinerea. Plant Pathol 45:795–806CrossRefGoogle Scholar
  5. Elad Y, Williamson B, Tudzinski P, Delen N (2004) Botrytis spp. and diseases they cause in agricultural systems – an introduction. In: Elad Y, Williamson B, Tudzinski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Amesterdam, pp 1–6Google Scholar
  6. Elmer PAG, Reglinski T (2006) Biosuppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177CrossRefGoogle Scholar
  7. Filgueira FAR (2008) Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças, 3rd edn. Editora UFV, ViçosaGoogle Scholar
  8. Glazener JA (1982) Accumulation of phenolic compounds in cells and formation of lignin-like polymers in cell walls of young tomato fruits after inoculation with Botrytis cinerea. Physiol Plant Pathol 20:11–25CrossRefGoogle Scholar
  9. Jensen B, Knudsen IMB, Jensen DF (2002) Survival of conidia of Clonostachys rosea on stored barley seeds and their biocontrol efficacy against seed-borne Bipolaris sorokiniana. Biocontrol Sci Tech 12:427–41CrossRefGoogle Scholar
  10. Korolev N, Mamiev M, Zahavi T, Elad Y (2009) Resistance to fungicides among Botrytis cinerea isolates from tomato and other hosts in Israel. Acta Hort (ISHS) 808:367–376Google Scholar
  11. Morandi MAB, Maffia LA, Mizubuti ESG, Alfenas AC, Barbosa JG (2003) Suppression of Botrytis cinerea sporulation by Clonostachys rosea on rose debris: a valuable component in Botrytis blight management in commercial greenhouses. Biol Control 26:311–317CrossRefGoogle Scholar
  12. Myresiotis CK, Bardas GA, Karaoglanidis GS (2008) Baseline sensitivity of Botrytis cinerea to pyraclostrobin and boscalid and control of anilinopyrimidine- and benzimidazole-resistant strains by these fungicides. Plant Dis 92:1427–1431CrossRefGoogle Scholar
  13. Nobre SAM (2003) Isolados brasileiros de Clonostachys rosea com potencial para biocontrole de Botrytis cinerea. PhD Thesis, Universidade Federal de Viçosa. Viçosa, MG, BrasilGoogle Scholar
  14. Nobre SAM, Maffia LA, Mizubuti ESG, Cota LV, Dias APS (2005) Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea. Biol Control 34:132–143CrossRefGoogle Scholar
  15. O’Neill TM, Shtienberg D, Elad Y (1997) Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis 81:36–40CrossRefGoogle Scholar
  16. Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133PubMedCrossRefGoogle Scholar
  17. Shafia A, Sutton JC, Yu H, Fletcher JT (2001) Influence of preinoculation light intensity on development and interactions of Botrytis cinerea and Clonostachys rosea in tomato leaves. Can J Plant Pathol 23:346–57CrossRefGoogle Scholar
  18. Shtienberg D, Elad Y (1997) Incorporation of weather forecasting to integrated, chemical-biological management of Botrytis cinerea. Phytopathology 87:332–340PubMedCrossRefGoogle Scholar
  19. Shtienberg D, Elad Y, Niv A, Nitzani Y, Kirshner B (1998) Significance of leaf infection by Botrytis cinerea in stem rotting of tomatoes grown in non-heated greenhouses. Eur J Plant Pathol 104:753–763CrossRefGoogle Scholar
  20. Silvera-Perez AE, Valdebenito-Sanhueza RM, Duarte V, Santos HP, Felippeto J (2010) Control of gray mold with Clonostachys rosea in the production of fuchsia cuttings. Trop Plant Pathol 35:163–169CrossRefGoogle Scholar
  21. Sutton JC, Li DW, Peng G, Yu H, Zhang P, Valdebenito-Sanhuenza RM (1997) Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81:316–28CrossRefGoogle Scholar
  22. Sutton JC, Liu W, Huang R, Owen-Going N (2002) Ability of Clonostachys rosea to establish and suppress sporulation potential of Botrytis cinerea in deleafed stems of hydroponic greenhouse tomatoes. Biocontrol Sci Tech 12:413–425CrossRefGoogle Scholar
  23. ten Have A, van Berloo R, Lindhout P, van Kan JAL (2007) Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. Eur J Plant Pathol 117:153–166CrossRefGoogle Scholar
  24. Vida JB, Zambolim L, Tessmann DJ, Brandão Filho JUT, Verzignassi JR, Caixeta MP (2004) Manejo de doenças de plantas em cultivo protegido. Fitopatol Bras 29:355–372CrossRefGoogle Scholar
  25. Yildiz F, Yildiz M, Delen N, Coskuntuna A, Kinay P, Turkusay H (2007) The effects of biological and chemical treatment on gray mold disease in tomatoes grown under greenhouse conditions. Turk J Agric For 31:319–325Google Scholar
  26. Yohalem DS (2004) Evaluation of fungal antagonists for grey mould management in early growth of pot roses. Ann Appl Biol 144:9–15CrossRefGoogle Scholar
  27. Yu H, Sutton JC (1997) Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Can J Plant Pathol 19:237–46CrossRefGoogle Scholar
  28. Zaldúa S, Sanfuentes E (2010) Control of Botrytis cinerea in Eucalyptus globulus mini-cuttings using Clonostachys rosea and Trichoderma strains. Chil J Agric Res 70:576–582CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2015

Authors and Affiliations

  • Álefe V. Borges
    • 1
  • Rodrigo M. Saraiva
    • 1
  • Luiz A. Maffia
    • 1
  1. 1.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations