Acoustics Australia

, Volume 45, Issue 2, pp 353–361 | Cite as

Potential Use of Broadband Acoustic Methods for Micronekton Classification

  • Arti Verma
  • Rudy J. Kloser
  • Alec J. Duncan
Original Paper


Broadband acoustic methods are an emerging technology with potential use in identification and classification of marine organisms. The application of broadband methods to scientific surveys of mesopelagic micronektons (animals of 2–20 cm length found at depths of 200–1000 m) is described. The principles of the broadband system are briefly outlined with particular emphasis on its use for micronekton detection and identification employing the TS-frequency curve of single targets. The use of acoustic scattering models to determine characteristics of the marine organism such as size and material properties is also discussed. As an example of the application of this technique, broadband echosounders mounted on a depth-profiling platform were used to collect high-frequency (55–160 kHz) acoustic data from mesopelagic depths (up to 600–1000 m) of the Great Australian Bight region. Some example results from narrowband and broadband echosounders are compared. The resulting frequency-dependent target strength curves of selected targets enabled classification into different acoustic groups, demonstrating the significant advantage provided by the broadband system. There is still a large gap between the achievable acoustic classification and the ultimate aim of species level classification, and to this end some limitations of broadband echosounder systems in identifying targets are discussed along with the use of video and still cameras to assist in the interpretation of acoustic data.


Broadband sonar systems Depth-profiling platform Target classification Target strength curves Spatial resolution 



This study is being undertaken as part of the Great Australian Bight Research Program, a collaboration between BP, CSIRO, the South Australian Research and Development Institute (SARDI), the University of Adelaide, and Flinders University. The Program aims to provide a whole-of-system understanding of the environment, economic and social values of the region, providing an information source for all to use. The authors would like to thank in particular Tim Ryan and Lars Nonboe Andersen for the software support and Matt Sherlock for configuring broadband sonar systems on the ICP. Thanks to Dezhang Chu Woods Hole at National Oceanic and Atmospheric Administration for providing the Distorted Wave Born Approximation model for fluid-filled animals. Special thanks to the whole team of the Marine National Facility (MNF) for managing and assisting the deployments.


  1. 1.
    Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., Kloser, R.: Optimization of a micronekton model with acoustic data. ICES J. Mar. Sci. 72(5), 1399–1412 (2015)Google Scholar
  2. 2.
    Kloser, R.J., Ryan, T.E., Keith, G., Gershwin, L.: Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe. ICES J. Mar. Sci./Journal du Conseil 73(8), 2037–2048 (2016)Google Scholar
  3. 3.
    Lehodey, P., Murtugudde, R., Senina, I.: Bridging the gap from ocean models to population dynamics of large marine predators: a model of mid-trophic functional groups. Prog. Oceanogr. 84(1–2), 69–84 (2010)CrossRefGoogle Scholar
  4. 4.
    Brodeur, R.D., Seki, M.P., Pakhomov, E.A., Suntsov, A.V.: Micronekton—what are they and why are they important. Pac. Mar. Sci. Org. Pices Press 13, 7–11 (2005)Google Scholar
  5. 5.
    Davison, P.C., Koslow, J.A., Kloser, R.J.: Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities. ICES J. Mar. Sci. 72(5), 1413–1424 (2015)Google Scholar
  6. 6.
    Scoulding, B., Chu, D., Ona, E., Fernandes, P.G.: Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137(2), 989–1000 (2015)CrossRefGoogle Scholar
  7. 7.
    Jason Phillips, A., Brodeur, R.D., Suntsov, A.V.: Micronekton community structure in the epipelagic zone of the northern California Current upwelling system. Prog. Oceanogr. 80(1–2), 74–92 (2009)CrossRefGoogle Scholar
  8. 8.
    Benoit-Bird, K.J., Au, W.W.: Target strength measurements of Hawaiian mesopelagic boundary community animals. J. Acoust. Soc. Am. 110(2), 812–819 (2001)CrossRefGoogle Scholar
  9. 9.
    Robison, B.H., Reisenbichler, K.R., Sherlock, R.E., Silguero, J.M.B., Chavez, F.P.: Seasonal abundance of the siphonophore, Nanomia bijuga, in Monterey Bay. Deep Sea Res. II Top. Stud. Oceanogr. 45(8), 1741–1751 (1998). doi: 10.1016/S0967-0645(98)80015-5 CrossRefGoogle Scholar
  10. 10.
    Béhagle, N., du Buisson, L., Josse, E., Lebourges-Dhaussy, A., Roudaut, G., Ménard, F.: Mesoscale features and micronekton in the Mozambique Channel: an acoustic approach. Deep Sea Res. II Top. Stud. Oceanogr. 100, 164–173 (2014)CrossRefGoogle Scholar
  11. 11.
    Kloser, R.J., Ryan, T.E., Young, J.W., Lewis, M.E.: Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J. Mar. Sci. 66(6), 998–1006 (2009)CrossRefGoogle Scholar
  12. 12.
    MacLennan, D.N., Holliday, D.V.: Fisheries and plankton acoustics: past, present, and future. ICES J. Mar. Sci. 53(2), 513–516 (1996). doi: 10.1006/jmsc.1996.0074 CrossRefGoogle Scholar
  13. 13.
    Smith, J.N., Ressler, P.H., Warren, J.D.: A distorted wave Born approximation target strength model for Bering Sea euphausiids. ICES J. Mar. Sci. 70(1), 204–214 (2013)CrossRefGoogle Scholar
  14. 14.
    Horne, J.K.: Acoustic approaches to remote species identification: a review. Fish. Oceanogr. 9(4), 356–371 (2000)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Simmonds, J., MacLennan, D.N.: Fisheries Acoustics: Theory and Practice. Wiley, New York (2008)Google Scholar
  16. 16.
    Medwin, H., Clay, C.: Fundamentals of Acoustical Oceanography. Academic, New York (1998)Google Scholar
  17. 17.
    Gunderson, D.R.: Surveys of Fisheries Resources. Wiley, New York (1993)Google Scholar
  18. 18.
    Koslow, J.A.: The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. (2009). doi: 10.1093/icesjms/fsp082 Google Scholar
  19. 19.
    Misund, O.A.: Underwater acoustics in marine fisheries and fisheries research. Rev. Fish Biol. Fish. 7(1), 1–34 (1997)CrossRefGoogle Scholar
  20. 20.
    Kloser, R.J., Ryan, T., Sakov, P., Williams, A., Koslow, J.A.: Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59(6), 1065–1077 (2002)CrossRefGoogle Scholar
  21. 21.
    Stanton, T.K., Wiebe, P.H., Chu, D.: Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton. J. Acoust. Soc. Am. 103(1), 254–264 (1998)CrossRefGoogle Scholar
  22. 22.
    Foote, K.G., Knudsen, H.P., Vestnes, G., MacLennan, D.N., Simmonds, E.J.: Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Cooperative Research Report No. 144, 69 pp. (1987)Google Scholar
  23. 23.
    Holliday, D.V.: Resonance structure in echoes from schooled pelagic fish. J. Acoust. Soc. Am. 51(4B), 1322–1332 (1972)CrossRefGoogle Scholar
  24. 24.
    Pieper, R.E., Holliday, D.V., Kleppel, G.S.: Quantitative zooplankton distributions from multifrequency acoustics. J. Plankton Res. 12(2), 433–441 (1990)CrossRefGoogle Scholar
  25. 25.
    Greenlaw, C.F.: Backscattering spectra of preserved zooplankton. J. Acoust. Soc. Am. 62(1), 44–52 (1977)CrossRefGoogle Scholar
  26. 26.
    Maclennan, D.N., Fernandes, P.G., Dalen, J.: A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59(2), 365–369 (2002)CrossRefGoogle Scholar
  27. 27.
    Zakharia, M.E., Magand, F., Hetroit, F., Diner, N.: Wideband sounder for fish species identification at sea. ICES J. Mar. Sci. 53(2), 203–208 (1996)CrossRefGoogle Scholar
  28. 28.
    Stanton, T.K., Sellers, C.J., Jech, J.M.: Resonance classification of mixed assemblages of fish with swimbladders using a modified commercial broadband acoustic echosounder at 1–6 kHz. Can. J. Fish. Aquat. Sci. 69(5), 854–868 (2012)CrossRefGoogle Scholar
  29. 29.
    Chu, D., Stanton, T.K.: Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton. J. Acoust. Soc. Am. 104(1), 39–55 (1998)CrossRefGoogle Scholar
  30. 30.
    Lavery, A.C., Chu, D., Moum, J.N.: Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J. Mar. Sci. 67(2), 379–394 (2010). doi: 10.1093/icesjms/fsp242 CrossRefGoogle Scholar
  31. 31.
    Kloser, R.J., Ryan, T.E., Macaulay, G.J., Lewis, M.E.: In situ measurements of target strength with optical and model verification: a case study for blue grenadier, Macruronus novaezelandiae. ICES J. Mar. Sci. 68(9), 1986–1995 (2011)CrossRefGoogle Scholar
  32. 32.
    Demer, D., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R.: Calibration of acoustic instruments. ICES Cooperative Research Report (326), 133 (2015)Google Scholar
  33. 33.
    Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K.: Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. J. Acoust. Soc. Am. 138(6), 3742–3764 (2015)CrossRefGoogle Scholar
  34. 34.
    Verma, A., Duncan, A., Kloser, R.J.: Developing active broadband acoustic methods to investigate the pelagic zone of the Great Australian Bight. In: Proceedings of Acoustics (2016)Google Scholar
  35. 35.
    Demer, D.A., Conti, S.G.: New target-strength model indicates more krill in the Southern Ocean. ICES J. Mar. Sci. 62(1), 25–32 (2005). doi: 10.1016/j.icesjms.2004.07.027 CrossRefGoogle Scholar
  36. 36.
    Stanton, T.K., Chu, D., Wiebe, P.H.: Acoustic scattering characteristics of several zooplankton groups. ICES J. Mar. Sci. 53(2), 289–295 (1996)CrossRefGoogle Scholar
  37. 37.
    Stanton, T.K., Chu, D., Wiebe, P.H.: Sound scattering by several zooplankton groups. II. Scattering models. J. Acoust. Soc. Am. 103(1), 236–253 (1998)CrossRefGoogle Scholar
  38. 38.
    Stanton, T.K., Chu, D., Wiebe, P.H., Eastwood, R.L., Warren, J.D.: Acoustic scattering by benthic and planktonic shelled animals. J. Acoust. Soc. Am. 108(2), 535–550 (2000)CrossRefGoogle Scholar
  39. 39.
    Foote, K.G.: Acoustic sampling volume. J. Acoust. Soc. Am. 90(2), 959–964 (1991)CrossRefGoogle Scholar
  40. 40.
    Lee, W.J., Stanton, T.K.: Statistics of broadband echoes: application to acoustic estimates of numerical density of fish. IEEE J. Ocean. Eng. PP(99), 1–15 (2015)Google Scholar
  41. 41.
    Turin, G.: An introduction to matched filters. IRE Trans. Inf. Theory 3(6), 311–329 (1960)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Burdic, W.S.: Underwater Acoustic System Analysis. Prentice Hall, Upper Saddle River (1991)Google Scholar
  43. 43.
    Kloser, R.J.: Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer. ICES J. Mar. Sci. 53(2), 407–413 (1996). doi: 10.1006/jmsc.1996.0057 CrossRefGoogle Scholar
  44. 44.
    Anthony, K.J., Bulman, C.M., Lyle, J.M.: The mid-slope demersal fish community off southeastern Australia. Deep Sea Res. I Oceanogr. Res. Pap. 41(1), 113–141 (1994)CrossRefGoogle Scholar
  45. 45.
    GABRP: Great Australian Bight Research Program. (2013)
  46. 46.
    Rogers, P.J., Ward, T.M., Van ruth, P.D., Williams, A., Bruce, B.D., Connell, S.D., Currie, D.R., Davies, C.R. Evans, K. & Gillanders, B.M., Goldsworthy, S.D., Griffin, D.A., Hardman-mountford, N.J., Ivey, A.R., Kloser, R.J., Middleton, J.K., Richardson, A.E., Ross, A., Tanner, J.E., Young, J. (2013). Physical processes, biodiversity and ecology of the Great Australian Bight region: a literature review: CSIRO (Australia) (2013)Google Scholar
  47. 47.
    Sherlock, M., Marouchos, A., Williams, A.: An instrumented corer platform for seabed sampling and water column characterisation. In: OCEANS 2014—Taipei, 7–10 April 2014, pp. 1–6 (2014)Google Scholar
  48. 48.
    Simrad: Simrad EK80 Scientific wide band echo sounder (2016)Google Scholar
  49. 49.
    Echoview Software Pty Ltd.: Echoview software, version 6.1.44. Echoview Software Pty Ltd, Hobart, Australia (2015)Google Scholar
  50. 50.
    Francois, R.E., Garrison, G.R.: Sound absorption based on ocean measurements. Part II: boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72(6), 1879–1890 (1982)CrossRefGoogle Scholar
  51. 51.
    Stanton, T.K., Chu, D.: Calibration of broadband active acoustic systems using a single standard spherical target. J. Acoust. Soc. Am. 124(1), 128–136 (2008)CrossRefGoogle Scholar
  52. 52.
    Benfield, M.C., Lavery, A.C., Wiebe, P.H., Greene, C.H., Stanton, T.K., Copley, N.J.: Distributions of physonect siphonulae in the Gulf of Maine and their potential as important sources of acoustic scattering. Can. J. Fish. Aquat. Sci. 60(7), 759–772 (2003)CrossRefGoogle Scholar
  53. 53.
    Demer, D.A., Conti, S.G.: Validation of the stochastic distorted-wave Born approximation model with broad bandwidth total target strength measurements of Antarctic krill. ICES J. Mar. Sci. 61(1), 155–156 (2004). doi: 10.1016/j.icesjms.2003.12.002 CrossRefGoogle Scholar
  54. 54.
    Stanton, T.K., Chu, D.: Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57(4), 793–807 (2000)CrossRefGoogle Scholar
  55. 55.
    Chu, D., Foote, K.G., Stanton, T.K.: Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am. 93(5), 2985–2988 (1993)CrossRefGoogle Scholar
  56. 56.
    Jones, B.A., Lavery, A.C., Stanton, T.K.: Use of the distorted wave Born approximation to predict scattering by inhomogeneous objects: application to squid. J. Acoust. Soc. Am. 125(1), 73–88 (2009)CrossRefGoogle Scholar
  57. 57.
    Love, R.H.: Resonant acoustic scattering by swimbladder-bearing fish. J. Acoust. Soc. Am. 64(2), 571–580 (1978)CrossRefGoogle Scholar
  58. 58.
    Stanton, T.K., Chu, D., Jech, J.M., Irish, J.D.: New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. ICES J. Mar. Sci. 67(2), 365–378 (2010)CrossRefGoogle Scholar
  59. 59.
    Andreeva, I.: Scattering of sound by air bladders of fish in deep sound-scattering ocean layers. Sov. Phys. Acoust. 10(1), 17–20 (1964)Google Scholar
  60. 60.
    Weston, D.E.: Sound propagation in the presence of bladder fish. Underw. Acoust. 2, 55–88 (1967)Google Scholar
  61. 61.
    Ye, Z.: Acoustic resonant scattering by an ellipsoid air bubble in a liquid. Phys. Rev. E 56(2), 2318–2320 (1997)Google Scholar
  62. 62.
    Baik, K.: Comment on “Resonant acoustic scattering by swimbladder-bearing fish” J. Acoust. Soc. Am. 64, 571–580 (1978) (L). J. Acoust. Soc. Am. 133(1), 5–8 (2013)CrossRefGoogle Scholar
  63. 63.
    Stanton, T.K.: 30 years of advances in active bioacoustics: a personal perspective. Methods Oceanogr. 1–2, 49–77 (2012)CrossRefGoogle Scholar
  64. 64.
    Ehrenberg, J.E.: A comparative analysis of in situ methods for directly measuring the acoustic target strength of individual fish. IEEE J. Ocean. Eng. 4(4), 141–152 (1979)CrossRefGoogle Scholar
  65. 65.
    Godø, O.R., Handegard, N.O., Browman, H.I., Macaulay, G.J., Kaartvedt, S., Giske, J., Ona, E., Huse, G., Johnsen, E.: Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scales on which they occur. ICES J. Mar. Sci. 71(8), 2357–2369 (2014). doi: 10.1093/icesjms/fsu116 CrossRefGoogle Scholar

Copyright information

© Australian Acoustical Society 2017

Authors and Affiliations

  1. 1.Centre for Marine Science and Technology (CMST)Curtin UniversityPerthAustralia
  2. 2.CSIRO Oceans and AtmosphereHobartAustralia

Personalised recommendations