Advertisement

Application of Biodegradable Materials in Orthopedics

  • Jun-Wei Li
  • Cheng-Fei DuEmail author
  • Chen-Xi Yuchi
  • Chun-Qiu Zhang
Review Article
  • 18 Downloads

Abstract

Purpose

To compare the advantages and disadvantages of biodegradable and non-degradable implants in orthopedic fractures.

Methods

Recent original articles about biodegradable and non-degradable implants for fracture fixation were reviewed extensively, and a comprehensive retrospective analysis was performed.

Results

Standard orthopedic treatment is to use non-degradable metal implants to fixate the fracture site. This kind of treatment not only causes rejection and stress shielding, but also requires a second surgery to remove the metal implants. In addition, this kind of treatment increases physical pain and is a serious financial burden to patients. However, biodegradable implants do not require a second surgery for removal and have good biocompatibility and osteoconductivity.

Conclusions

Biodegradable implants do not require a second surgery for removal and have good biocompatibility and osteoconductivity. Consequently, they are an ideal treatment and are increasingly used for orthopedic surgical patients. The most common indications for biodegradable implants include craniofacial reconstruction, anterior cruciate ligament reconstruction, meniscus repair, ankle fracture treatment, and tibia and fibula fracture treatment.

Keywords

Fractures Metal implants Biodegradable implants Orthopedics 

Notes

Acknowledgements

We wish to thank Professor Min-Fang Chen, School of Materials Science and Engineering, Tianjin University of Technology for advice on revising manuscript. The work was supported by the Projects from National Natural Foundation Fund (11432016, 11602172, 51871166). The work was supported by the Projects from National Natural Foundation Fund (Grant Nos. 11432016, 11602172).

Author Contributions

CY and CZ contributed significantly to the search for references, analysis and manuscript preparation. JL performed the data analyses and wrote the manuscript. CD helped perform the analysis with constructive discussion and approved the final version. All authors read and approved the final manuscript.

Funding

Projects from National Natural Foundation Fund (Grant Nos. 11432016, 11602172)

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kim, B. S., & Mooney, D. J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16(5), 224.Google Scholar
  2. 2.
    Gefen, A. (2002). Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Medical & Biological Engineering & Computing, 40(3), 311–322.Google Scholar
  3. 3.
    Viljanen, J., Bondestam, S., Majola, A. R. P., Tormala, P., & Kinnunen, J. (1995). Bone changes after experimental osteotomies fixed with absorbable self-reinforced poly- l -lactide screws or metallic screws studied by plain radiographs, quantitative computed tomography and magnetic resonance imaging. Biomaterials, 16(17), 1353.Google Scholar
  4. 4.
    Waris, E., Konttinen, Y. T., Ashammakhi, N., Suuronen, R., & Santavirta, S. (2004). Bioabsorbable fixation devices in trauma and bone surgery: Current clinical standing. Expert Review of Medical Devices, 1(2), 229–240.Google Scholar
  5. 5.
    Hughes, T. B. (2006). Bioabsorbable implants in the treatment of hand fractures: An update. Clinical Orthopaedics and Related Research, 445(445), 169–174.Google Scholar
  6. 6.
    Gristina, A. G., Naylor, P. T., & Myrvik, Q. N. (1987). Biomaterial-centered infections: Microbial adhesion versus tissue integration. Science, 237(4822), 1588–1595.Google Scholar
  7. 7.
    Litsky, A. S. (2010). Clinical reviews: Bioabsorbable implants for orthopedic fracture fixation. Journal of Applied Biomaterials, 4(1), 109–111.Google Scholar
  8. 8.
    Kim, W. S., Vacanti, C. A., Upton, J., & Vacanti, J. P. (1994). Bone defect repair with tissue-engineered cartilage. Plastic and Reconstructive Surgery, 94(5), 580–584.Google Scholar
  9. 9.
    Cao, Y., & Shang, Q. (2001). Present situation and trend of cartilage and bone tissue engineering. Chinese Journal of Trauma, 17, 7–9.Google Scholar
  10. 10.
    Zeng, F., & Chen, H. (2016). Comparison of clinical application of different materials in maxillofacial fracture internal fixation. Chinese Journal of Clinical Oncology, 44, 85–86.Google Scholar
  11. 11.
    Thordarson, D. B., Hedman, T. P., Gross, D., & Magre, G. (1997). Biomechanical evaluation of polylactide absorbable screws used for syndesmosis injury repair. Foot and Ankle International, 18(10), 622–627.Google Scholar
  12. 12.
    Zhao, X. Z., Li, H. J., Meng, C. Y., Li, Y., Zhang, S. F., & Liu, M. H. (2016). Absorbable screw and metal screw fixation for ankle fractures: Comparison of biocompatibility and ankle function. Chinese Journal of Tissue Engineering Research, 20(31), 4687–4692.Google Scholar
  13. 13.
    Chen, Y. X., Chun-Tang, L. U., & Shu-Xia, Z. (2002). Experimental study on absorbable plates and screws for internal flxation of mandibular fracture. Medical Journal of National Defending Forces in North China, 14(1), 5–8.Google Scholar
  14. 14.
    Lee, H. B., Oh, J. S., Kim, S. G., Kim, H. K., Moon, S. Y., Kim, Y. K., et al. (2010). Comparison of titanium and biodegradable miniplates for fixation of mandibular fractures. Journal of Oral & Maxillofacial Surgery Official Journal of the American Association of Oral & Maxillofacial Surgeons, 68(9), 2065–2069.Google Scholar
  15. 15.
    Leno, M. B., Liu, S. Y., Chen, C. T., & Liao, H. T. (2017). Comparison of functional outcomes and patient-reported satisfaction between titanium and absorbable plates and screws for fixation of mandibular fractures: A one-year prospective study. Journal of Cranio-Maxillo-Facial Surgery, 45(5), 704–709.Google Scholar
  16. 16.
    Bell, R. B., & Kindsfater, C. S. (2006). The use of biodegradable plates and screws to stabilize facial fractures. Journal of Oral and Maxillofacial Surgery, 34(1), 84.Google Scholar
  17. 17.
    Tiihonen, R., Honkanen, P. B., Belt, E. A., Ikävalko, M., & Skyttä, E. T. (2012). The mean seven years’ results of the use of poly-L/D-lactic acid (PLDLA) interposition implant and bone packing in revision metacarpophalangeal arthroplasty: A prospective cohort study. Scandinavian Journal of Surgery Sjs Official Organ for the Finnish Surgical Society & the Scandinavian Surgical Society, 101(4), 265–270.Google Scholar
  18. 18.
    Kulkarni, R. K., Pani, K. C., Neuman, C., & Leonard, F. (1966). Polylactic acid for surgical implants. The Archives of Surgery, 93(5), 839–843.Google Scholar
  19. 19.
    Eppley, B. L., Morales, L., Wood, R., Pensler, J., Goldstein, J., Havlik, R. J., et al. (2004). Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: Clinical experience in 1883 patients. Plastic and Reconstructive Surgery, 114(4), 850.Google Scholar
  20. 20.
    Tang, Z., Yang, L., Wang, Y., Xue, R., Zhang, J., Huang, W., et al. (2010). Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. Journal of Orthopaedic Research, 27(2), 243–248.Google Scholar
  21. 21.
    Papalia, R., Vasta, S., D’Adamio, S., Giacalone, A., Maffulli, N., & Denaro, V. (2014). Metallic or bioabsorbable interference screw for graft fixation in anterior cruciate ligament (ACL) reconstruction? British Medical Bulletin, 109(1), 19–29.Google Scholar
  22. 22.
    Yang, K., Zhu, W., Huang, J., Duan, L., Chen, H., Cui, J., et al. (2016). A biomechanical study of two modified dioabsorbable interference screw for fixation of soft tissue grafts in anterior cruciate ligament reconstruction. Journal of Practical Orthopaedics, 22, 518–521.Google Scholar
  23. 23.
    Arama, Y., Salmon, L. J., Sri-Ram, K., Linklater, J., Roe, J. P., & Pinczewski, L. A. (2015). Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: A prospective, blinded, randomized controlled trial with 5-year follow-up. The American Journal of Sports Medicine, 43(8), 1893.Google Scholar
  24. 24.
    Robinson, J., Huber, C., Jaraj, P., Colombet, P., Allard, M., & Meyer, P. (2006). Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-L-lactic acid/hydroxyapatite bioabsorbable screws. Knee, 13(2), 127–131.Google Scholar
  25. 25.
    Patkowski, M., Królikowska, A., & Reichert, P. (2016). Comparison of bioabsorbable interference screws composed of poly-l-lactic acid and hydroxyapatite (PLLA-HA) to washerloc tibial fixation in patients after anterior cruciate ligament reconstruction of the knee joint. Polimery w Medycynie, 46(1), 53.Google Scholar
  26. 26.
    Court-Brown, C. M., Mcbirnie, J., & Wilson, G. (1998). Adult ankle fractures—an increasing problem? Acta Orthopaedica Scandinavica, 69(1), 43.Google Scholar
  27. 27.
    Rangdal, S., Singh, D., Joshi, N., Soni, A., & Sament, R. (2012). Functional outcome of ankle fracture patients treated with biodegradable implants. Foot and Ankle Surgery, 18(3), 153–156.Google Scholar
  28. 28.
    Bohnsack, M., Börner, C., Schmolke, S., Möller, H., Wirth, C. J., & Rühmann, O. (2003). Clinical results of arthroscopic meniscal repair using biodegradable screws. Knee Surgery, Sports Traumatology, Arthroscopy, 11(6), 379–383.Google Scholar
  29. 29.
    Zhao, B., Qiu, X., Wang, D., Li, H., & He, X. (2016). Application of bioabsorbable screw fixation for anterior cervical decompression and bone grafting. Clinics, 71(6), 320–324.Google Scholar
  30. 30.
    Wendelstein, J. A., Goger, P., Bock, P., Schuh, R., Doz, P., & Trnka, H. J. (2017). Bioabsorbable fixation screw for proximal interphalangeal arthrodesis of lesser toe deformities. Foot and Ankle International, 38(2), 1071100717711925.Google Scholar
  31. 31.
    Larsen, M. W., Pietrzak, W. S., & Delee, J. C. (2005). Fixation of osteochondritis dissecans lesions using poly(l-lactic acid)/poly(glycolic acid) copolymer bioabsorbable screws. American Journal of Sports Medicine, 33(1), 68.Google Scholar
  32. 32.
    Park, S., Kim, J. H., Kim, I. H., Lee, M., Heo, S., Kim, H., et al. (2013). Evaluation of poly(lactic-co-glycolic acid) plate and screw system for bone fixation. Journal of Craniofacial Surgery, 24(3), 1021–1025.Google Scholar
  33. 33.
    Wang, J., Shihua, X. V., Leng, G., & Yao, X. (2016). Effect of absorbable screw in the treatment of 34 cases of elderly patients with tibial plateau fracture complicated with osteoporosis and its effect on pain and complications. Shanghai Medical & Pharmaceutical Journal, 37(17), 34–37.Google Scholar
  34. 34.
    Han, P., Cheng, P., Zhang, S., Zhao, C., Ni, J., Zhang, Y., et al. (2015). In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials, 64, 57–69.Google Scholar
  35. 35.
    Chaya, A., Yoshizawa, S., Verdelis, K., Noorani, S., Costello, B. J., & Sfeir, C. (2015). Fracture healing using degradable magnesium fixation plates and screws. Journal of Oral and Maxillofacial Surgery, 73(2), 295–305.Google Scholar
  36. 36.
    Chaya, A., Yoshizawa, S., Verdelis, K., Myers, N., Costello, B. J., Chou, D. T., et al. (2015). In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomaterialia, 18, 262–269.Google Scholar
  37. 37.
    Yang, J. X., Cui, F. Z., Lee, I. S., Zhang, Y., Yin, Q. S., Xia, H., et al. (2012). In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. Journal of Biomaterials Applications, 27(2), 153.Google Scholar
  38. 38.
    Cheng, P., Han, P., Zhao, C., Zhang, S., Wu, H., Ni, J., et al. (2016). High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 81, 14–26.Google Scholar
  39. 39.
    Zhao, D., Huang, S., Lu, F., Wang, B., Yang, L., Qin, L., et al. (2016). Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials, 81(1), 84–92.Google Scholar
  40. 40.
    Erdmann, N., Angrisani, N., Reifenrath, J., Lucas, A., Thorey, F., Bormann, D., et al. (2011). Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomaterialia, 7(3), 1421–1428.Google Scholar
  41. 41.
    Thomann, M., Krause, C., Angrisani, N., Bormann, D., Hassel, T., Windhagen, H., et al. (2010). Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials Research, Part A, 93A(4), 1609–1619.Google Scholar
  42. 42.
    Adam, R., Orban, H., Plopeanu, E., Voinescu, D., & Barbilian, A. (2017). Results of in vivo biological tests performed on a Mg-0.8Ca alloy. Key Engineering Materials, 745, 50–61.Google Scholar
  43. 43.
    Tan, L., Chen, J., Xiaoming, Y. U., & Yang, K. (2017). Recent advances on biodegradable MgYREZr magnesium alloy. Acta Metallurgica Sinica, 53(10), 1207–1214.Google Scholar
  44. 44.
    Henning, W., Kerstin, R., Andreas, W., Julia, D., Yvonne, N., Ulrike, K., et al. (2013). Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomedical Engineering Online, 12(1), 62.Google Scholar
  45. 45.
    Diekmann, J., Bauer, S., Weizbauer, A., Willbold, E., Windhagen, H., Helmecke, P., et al. (2016). Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Materials Science and Engineering, 59, 1100–1109.Google Scholar
  46. 46.
    Meier, R., & Panzica, M. (2017). First results with a resorbable MgYREZr compression screw in unstable scaphoid fractures show extensive bone cysts. Handchirurgie, Mikrochirurgie, Plastische Chirurgie, 49(1), 37–41.Google Scholar
  47. 47.
    Witte, F., Fischer, J., Nellesen, J., Crostack, H., Kaese, V., Pisch, A., et al. (2006). In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27(7), 1013–1018.Google Scholar
  48. 48.
    Duygulu, O., Kaya, R. A., Oktay, G., & Kaya, A. A. (2007). Investigation on the potential of magnesium alloy AZ31 as a bone implant. Materials Science Forum, 546, 421–424.Google Scholar
  49. 49.
    Teng, J. P., Yang, Z. Y., Cheng, Y. S., Ni, D., Zhu, Z. J., & Zhu, Y. M. (2013). Biomechanical properties of a magnesium alloy absorbable rib intramedullary nail. Chinese Journal of Tissue Engineering Research, 17(48), 8388–8393.Google Scholar
  50. 50.
    Sun, W., Zhang, G., Tan, L., Yang, K., & Ai, H. (2016). The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. Materials Science & Engineering C Materials for Biological Applications, 63, 506–511.Google Scholar
  51. 51.
    Yan, T., Tan, L., Xiong, D., Liu, X., Zhang, B., & Yang, K. (2010). Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Materials Science and Engineering C, 30(5), 740–748.Google Scholar
  52. 52.
    Yu, W., Zhao, H., Ding, Z., Zhang, Z., Sun, B., Shen, J., et al. (2017). In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 149, 330–340.Google Scholar
  53. 53.
    Olthof, M. G. L., Tryfonidou, M. A., Liu, X., Pouran, B., Meij, B. P., Dhert, W. J. A., et al. (2018). Phosphate functional groups improve oligo [(polyethylene glycol) fumarate] osteoconduction and BMP-2 osteoinductive efficacy. Tissue Engineering Part A, 24(9–10), 819–829.Google Scholar
  54. 54.
    Olthof, M. G. L., Kempen, D. H. R., Liu, X., Dadsetan, M., Tryfonidou, M. A., Yaszemski, M. J., et al. (2018). Bone morphogenetic protein-2 release profile modulates bone formation in phosphorylated hydrogel. Journal of tissue engineering and regenerative medicine, 12(6), 1339–1351.Google Scholar
  55. 55.
    Kiekara, T., Paakkala, A., Suomalainen, P., Huhtala, H., & Järvelä, T. (2017). Femoral and tibial tunnel diameter and bioabsorbable screw findings after double-bundle ACL reconstruction in 5-Year clinical and MRI follow-up. Orthopaedic Journal of Sports Medicine, 5(2), 2325967116685525.Google Scholar
  56. 56.
    Martinek, V., & Friederich, N. F. (1999). Tibial and pretibial cyst formation after anterior cruciate ligament reconstruction with bioabsorbable interference screw fixation. Arthroscopy the Journal of Arthroscopic & Related Surgery, 15(3), 317–320.Google Scholar
  57. 57.
    Appelt, A., & Baier, M. (2007). Recurrent locking of knee joint caused by intraarticular migration of bioabsorbable tibial interference screw after arthroscopic ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 15(4), 378–380.Google Scholar
  58. 58.
    Peltoniemi, H. H., Tulamo, R. M., Pihlajamäki, H. K., Kallioinen, M., Pohjonen, T., Törmälä, P., et al. (1998). Consolidation of craniotomy lines after resorbable polylactide and titanium plating: A comparative experimental study in sheep. Plastic and Reconstructive Surgery, 101(1), 123–133.Google Scholar
  59. 59.
    Weiler, A., Hoffmann, R. F., Stähelin, A. C., Helling, H. J., & Südkamp, N. P. (2000). Biodegradable implants in sports medicine: The biological base. Arthroscopy the Journal of Arthroscopic & Related Surgery, 16(3), 305–321.Google Scholar
  60. 60.
    Zhang, J., Li, Y., Tang, Z., Xue, R., Wang, Y., Luo, Z., et al. (2009). Expression of MMPs and TIMPs family in human ACL and MCL fibroblasts. Connective Tissue Research, 50(1), 7–13.Google Scholar
  61. 61.
    Chen, Y., Xu, Z., Smith, C., & Sankar, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 10(11), 4561–4573.Google Scholar
  62. 62.
    Argo, D. (2002). Process parameters and diecasting of Noranda’s AJ52 high temperature Mg-Al-Sr alloy. Magnesium Technology, 2002, 87–93.Google Scholar
  63. 63.
    Li, H., Pang, S., Liu, Y., Sun, L., Liaw, P. K., & Zhang, T. (2015). Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Materials and Design, 67, 9–19.Google Scholar
  64. 64.
    Seiler, H. G., Sigel, H., & Sigel, A. (1988). Handbook on toxicity of inorganic compounds (p. 237). Abingdon: Taylor & Francis.Google Scholar
  65. 65.
    Wu, W., Petrini, L., Gastaldi, D., Villa, T., Vedani, M., Lesma, E., et al. (2010). Finite element shape optimization for biodegradable magnesium alloy stents. Annals of Biomedical Engineering, 38(9), 2829–2840.Google Scholar
  66. 66.
    Debusschere, N., Segers, P., Dubruel, P., Verhegghe, B., & De, B. M. (2015). A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. Journal of Biomechanics, 48(10), 2012–2018.Google Scholar
  67. 67.
    Debusschere, N., Segers, P., Dubruel, P., Verhegghe, B., & Beule, M. D. (2015). A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Annals of Biomedical Engineering, 44(2), 1–9.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2019

Authors and Affiliations

  • Jun-Wei Li
    • 1
    • 2
  • Cheng-Fei Du
    • 1
    • 2
    Email author
  • Chen-Xi Yuchi
    • 1
    • 2
  • Chun-Qiu Zhang
    • 1
    • 2
  1. 1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina
  2. 2.National Demonstration Center for Experimental Mechanical and Electrical Engineering EducationTianjin University of TechnologyTianjinChina

Personalised recommendations