Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 222–235 | Cite as

Local Transformed Features for Epileptic Seizure Detection in EEG Signal

Original Article
  • 48 Downloads

Abstract

Epilepsy is a well known neurological disorder characterized by the presence of recurrent seizures. Electroencephalograms (EEGs) record electrical activity in the brain and are used to detect epilepsy. Traditional EEG analysis methods for epileptic seizure detection are time-consuming, which has led to the recent proposal of several automated seizure detection frameworks. Feature extraction and classification are two important steps in this procedure. Feature extraction focuses on finding the informative features that could be used in the classification step for correct decision making; therefore, proposing some effective feature extraction techniques for seizure detection is of great significance. This paper introduces two novel feature extraction techniques: local centroid pattern (LCP) and one-dimensional local ternary pattern (1D-LTP) for seizure detection in EEG signal. Both the techniques are computationally simple and easy to implement. In both the techniques, the histograms are formed in the first step using the transformation code and then these histogram-based feature vectors are fed into a classifier in the second step. The performance of the proposed techniques was evaluated through 10-fold cross-validation tested on the benchmark dataset. Different machine learning classifiers were used for the classification. The experimental results show that LCP and 1D-LTP achieved the highest accuracy of 100% for the classification between normal and seizure EEG signals with the artificial neural network classifier. Nine different experimental cases have been tested. The results achieved for different experimental cases were higher than the results of some existing techniques in the literature. The experimental results indicate that LCP and 1D-LTP could be effective feature extraction techniques for seizure detection.

Keywords

Electroencephalogram (EEG) signals Local centroid pattern (LCP) One-dimensional local ternary pattern (1D-LTP) Feature extraction Classification 

Notes

Acknowledgements

The authors would like to thank Dr. R.G. Andrzejak of University of Bonn, Germany, for providing permission to use the EEG dataset available online.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they do not have any real or perceived conflicts of interest pertaining to the present study.

References

  1. 1.
    World Health Organization, Fact Sheet. (2016). Epilepsy. Retrieved June, 2016 from http://www.who.int/mediacentre/factsheets/fs999/en/.
  2. 2.
    Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.CrossRefGoogle Scholar
  3. 3.
    Iasemidis, L. D., Shiau, D. S., Chaovalitwongse, W., Sackellares, J. C., Pardalos, P. M., Principe, J. C., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.CrossRefGoogle Scholar
  4. 4.
    Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.CrossRefGoogle Scholar
  5. 5.
    Chandaka, S., Chatterjee, A., & Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36(2), 1329–1336.CrossRefGoogle Scholar
  6. 6.
    Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.CrossRefGoogle Scholar
  7. 7.
    Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Duque-Muñoz, L., Espinosa-Oviedo, J. J., & Castellanos-Dominguez, C. G. (2014). Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms. Biomedical engineering online, 13(1), 1.CrossRefGoogle Scholar
  9. 9.
    Faust, O., Acharya, U. R., Adeli, H., & Adeli, A. (2015). Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 26, 56–64.CrossRefGoogle Scholar
  10. 10.
    Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.CrossRefGoogle Scholar
  11. 11.
    Swami, P., Gandhi, T. K., Panigrahi, B. K., Bhatia, M., Santhosh, J., & Anand, S. (2016). A comparative account of modelling seizure detection system using wavelet techniques. International Journal of Systems Science: Operations & Logistics. doi: 10.1080/23302674.2015.1116637.Google Scholar
  12. 12.
    Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.CrossRefGoogle Scholar
  13. 13.
    Chen, L. L., Zhang, J., Zou, J. Z., Zhao, C. J., & Wang, G. S. (2014). A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomedical Signal Processing and Control, 10, 1–10.CrossRefGoogle Scholar
  14. 14.
    Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2027–2036.CrossRefGoogle Scholar
  15. 15.
    Swami, P., Gandhi, T. K., Panigrahi, B. K., Tripathi, M., & Anand, S. (2016). A novel robust diagnostic model to detect seizures in electroencephalography. Expert Systems with Applications, 56, 116–130.CrossRefGoogle Scholar
  16. 16.
    Li, D., Xie, Q., Jin, Q., & Hirasawa, K. (2016). A sequential method using multiplicative extreme learning machine for epileptic seizure detection. Neurocomputing, 214, 692–707.CrossRefGoogle Scholar
  17. 17.
    Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2016). ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egyptian Informatics Journal. doi: 10.1016/j.eij.2016.05.001.Google Scholar
  18. 18.
    Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.CrossRefGoogle Scholar
  19. 19.
    Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.CrossRefGoogle Scholar
  20. 20.
    Acharya, U. R., Fujita, H., Sudarshan, V. K., Bhat, S., & Koh, J. E. (2015). Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowledge-Based Systems, 88, 85–96.CrossRefGoogle Scholar
  21. 21.
    Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37(12), 8659–8666.CrossRefGoogle Scholar
  22. 22.
    Acharya, U. R., Sree, S. V., Alvin, A. P. C., & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.CrossRefGoogle Scholar
  23. 23.
    Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., & Ang, P. C. A. (2011). Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems, 21(03), 199–211.CrossRefGoogle Scholar
  24. 24.
    Niknazar, M., Mousavi, S. R., Vahdat, B. V., & Sayyah, M. (2013). A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE J Biomed Health Inform, 17(3), 572–578.CrossRefGoogle Scholar
  25. 25.
    Du, X., Dua, S., Acharya, R. U., & Chua, C. K. (2012). Classification of epilepsy using high-order spectra features and principle component analysis. Journal of Medical Systems, 36(3), 1731–1743.CrossRefGoogle Scholar
  26. 26.
    Acharya, U. R., Yanti, R., Zheng, J. W., Krishnan, M. M. R., Tan, J. H., Martis, R. J., et al. (2013). Automated diagnosis of epilepsy using CWT, HOS and texture parameters. International Journal of Neural Systems, 23(03), 1350009.CrossRefGoogle Scholar
  27. 27.
    Acharya, U. R., Sree, S. V., & Suri, J. S. (2011). Automatic detection of epileptic EEG signals using higher order cumulant features. International Journal of Neural Systems, 21(05), 403–414.CrossRefGoogle Scholar
  28. 28.
    Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.CrossRefGoogle Scholar
  29. 29.
    Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.CrossRefGoogle Scholar
  30. 30.
    Martis, R. J., Acharya, U. R., Tan, J. H., Petznick, A., Yanti, R., Chua, C. K., et al. (2012). Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. International Journal of Neural Systems, 22(06), 1250027.CrossRefGoogle Scholar
  31. 31.
    Pachori, R. B., Sharma, R., & Patidar, S. (2015). Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In Quanmin Zhu & Ahmad Taher Azar (Eds.), Complex system modelling and control through intelligent soft computations (pp. 367–388). Cham: Springer.Google Scholar
  32. 32.
    Fu, K., Qu, J., Chai, Y., & Dong, Y. (2014). Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomedical Signal Processing and Control, 13, 15–22.CrossRefGoogle Scholar
  33. 33.
    Bajaj, V., & Pachori, R. B. (2012). Separation of rhythms of EEG signals based on Hilbert-Huang transformation with application to seizure detection. In G. Lee, D. Howard, J. J. Kang, & D. Ślęzak (Eds.), Convergence and hybrid information technology. ICHIT 2012 (Vol. 7425)., Lecture Notes in Computer Science Berlin: Springer.Google Scholar
  34. 34.
    Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.CrossRefMATHGoogle Scholar
  35. 35.
    Chatlani, N., & Soraghan, J. J. (2010). Local binary patterns for 1-D signal processing. In 18th European Signal Processing Conference, Aalborg, pp. 95–99.Google Scholar
  36. 36.
    Kaya, Y., Uyar, M., Tekin, R., & Yıldırım, S. (2014). 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Applied Mathematics and Computation, 243, 209–219.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kumar, T. S., Kanhangad, V., & Pachori, R. B. (2015). Classification of seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal Processing and Control, 15, 33–40.CrossRefGoogle Scholar
  38. 38.
    Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Nanni, L., Brahnam, S., & Lumini, A. (2011). Local ternary patterns from three orthogonal planes for human action classification. Expert Systems with Applications, 38(5), 5125–5128.CrossRefGoogle Scholar
  40. 40.
    Altınçay, H., & Erenel, Z. (2014). Ternary encoding based feature extraction for binary text classification. Applied intelligence, 41(1), 310–326.CrossRefGoogle Scholar
  41. 41.
    Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.CrossRefGoogle Scholar
  42. 42.
    Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligenceVolume 2 (IJCAI’95) (pp. 1137–1143). San Francisco, CA: Morgan Kaufmann Publishers Inc.Google Scholar
  43. 43.
    Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.CrossRefGoogle Scholar
  44. 44.
    Nigam, V. P., & Graupe, D. (2013). A neural-network-based detection of epilepsy. Neurological Research, 26(1), 55–60.CrossRefGoogle Scholar
  45. 45.
    Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.CrossRefGoogle Scholar
  46. 46.
    Orhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475–13481.CrossRefGoogle Scholar
  47. 47.
    Nicolaou, N., & Georgiou, J. (2012). Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications, 39(1), 202–209.CrossRefGoogle Scholar
  48. 48.
    Işik, H., & Sezer, E. (2012). Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform. Journal of Medical Systems, 36(1), 1–13.CrossRefGoogle Scholar
  49. 49.
    Zhu, G., Li, Y., & Wen, P. P. (2014). Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Computer Methods and Programs in Biomedicine, 115(2), 64–75.CrossRefGoogle Scholar
  50. 50.
    Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133, 271–279.CrossRefGoogle Scholar
  51. 51.
    Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.CrossRefGoogle Scholar
  52. 52.
    Lee, S. H., Lim, J. S., Kim, J. K., Yang, J., & Lee, Y. (2014). Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Computer Methods and Programs in Biomedicine, 116(1), 10–25.CrossRefGoogle Scholar
  53. 53.
    Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.CrossRefGoogle Scholar
  54. 54.
    Sharma, R., & Pachori, R. B. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications, 42(3), 1106–1117.CrossRefGoogle Scholar
  55. 55.
    Tawfik, N. S., Youssef, S. M., & Kholief, M. (2015). A hybrid automated detection of epileptic seizures in EEG records. Computers & Electrical Engineering, 53, 177–193.CrossRefGoogle Scholar
  56. 56.
    Tiwari, A., Pachori, R. B., Kanhangad, V., & Panigrahi, B. (2016). Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE Journal of Biomedical and Health Informatics. doi: 10.1109/JBHI.2016.2589971.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations