Journal of Medical and Biological Engineering

, Volume 37, Issue 6, pp 879–886 | Cite as

A Feasibility Study Regarding the Potential Use of Silica-Doped Calcium Sulfate Anhydrite as a Bone Void Filler

  • Man-Ping Chang
  • Hsiu-Ching Hsu
  • Wei-Hsing Tuan
  • Po-Liang Lai
Original Article


In the present study, the feasibility of using calcium sulfate anhydrite (CaSO4) pellets as bone void filler is evaluated. The calcium sulfate anhydrite pellets are prepared by dry-pressing calcium sulfate hemihydrate powder, then sintering at elevated temperatures. The remaining porosity within anhydrite pellets is only 7% after sintering at 1000 °C. The growth of CaSO4 grains during sintering is very fast. The addition of a small amount of silica (SiO2), <1 wt%, can prevent the coarsening of anhydrite grains during sintering. The microstructure refinement may be related to the formation of CaSiO3 particles at the boundaries of the CaSO4 grains. The SiO2-doped anhydrite pellets thus exhibit higher compressive strength. Moreover, the degradation of SiO2-doped anhydrite pellets is slower than that of anhydrite pellets. The slow degradation rate is likely attributable to the dissolution of minute amounts of SiO2 in CaSO4.


Bone void filler Calcium sulfate Degradation Sintering 



The present study was supported by the Ministry of Science and Technology and Chang Gung Memorial Hospital through contract numbers MOST 103-2221-E-002-077, CMRPG3E0681 and CMRPG3E0682. The technical assistance of Ms. Yi-Chun Tsung (NTU), Mr. Hao-Wei Wu (NTU), Dr. Shu-Ting Kuo (NTU) and Ms. Louisa Wu (CGMH) is greatly appreciated.


  1. 1.
    Wang, J. L., Zin, Y. T., Tzeng, C. C., Lin, C. I., Lin, S. W., & Chang, G. L. (2003). The assay of bone reaction after implantation of calcium sulfate and a composite of calcium sulfate and calcium phosphate. Journal of Medical and Biological Engineering, 23, 205–212.Google Scholar
  2. 2.
    Chen, W. J., Tsai, T. T., Chen, L. H., Niu, C. C., Lai, P. L., Fu, T. S., et al. (2005). The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine, 30, 2293–2297.CrossRefGoogle Scholar
  3. 3.
    Winn, S. R., & Hollinger, J. O. (2000). An osteogenic cell culture system to evaluate the cytocompatibility of osteoest, a calcium sulfate bone void filler. Biomaterials, 24, 2413–2425.CrossRefGoogle Scholar
  4. 4.
    Borhan, S., Hesaraki, S., & Ahmadzadeh-Asl, S. (2010). Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement. Journal of Materials Science Materials in Medicine, 21, 3171–3181.CrossRefGoogle Scholar
  5. 5.
    Sony, S., Babu, S. S., Nishad, K. V., Varma, H., & Komath, M. (2015). Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate. Journal of Materials Science Materials in Medicine, 26, 31–44.CrossRefGoogle Scholar
  6. 6.
    Yang, G., Liu, J., Li, F., Pan, Z., Ni, X., Shen, Y., et al. (2014). Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications. Materials Science and Engineering C, 35, 70–76.CrossRefGoogle Scholar
  7. 7.
    Pietrzak, W. S., & Ronk, R. (2000). Calcium sulfate bone void filler: A review and a look ahead. Journal of Craniofacial Surgery, 11, 327–333.CrossRefGoogle Scholar
  8. 8.
    Blaha, J. D. (1998). Calcium sulfate bone-void filler. Orthopedics, 21, 1017–1019.Google Scholar
  9. 9.
    Alexander, D. I., Manson, N. A., & Mitchell, M. J. (2001). Efficacy of calcium sulfate plus decomposition bone in lumbar and lumbosacral spinal fusion: Preliminary results in 40 patients. Canadian Journal of Surgery, 44, 262–266.Google Scholar
  10. 10.
    Thomas, M. V., & Puleo, D. A. (2009). Review calcium sulfate: Properties and clinical applications. Journal of Biomedical Materials Research Part B, 88, 597–601.CrossRefGoogle Scholar
  11. 11.
    Singh, N. B., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53, 57–67.CrossRefGoogle Scholar
  12. 12.
    Kuo, S. T., Wu, H. W., Tuan, W. H., Tsai, Y. Y., Wang, S. F., & Sakka, Y. (2013). Porous calcium sulfate ceramics with tunable degradation rate. Journal of Materials Science Materials in Medicine, 23, 2437–2443.CrossRefGoogle Scholar
  13. 13.
    Rice, R. W. (2005). Use of normalized porosity in models for the porosity dependence of mechanical properties. Journal of Materials Science, 40, 983–989.CrossRefGoogle Scholar
  14. 14.
    Brook, R. J. (1976). Controlled grain growth. In F. F. Y. Wang (Ed.), Treatise on materials science and technology (Vol. 9, pp. 331–364). New York: Academic.Google Scholar
  15. 15.
    Chang, M. P., Tsung, Y. C., Hsu, H. C., Tuan, W. H., & Lai, P. L. (2015). Addition of a small amount of glass to improve the degradation behavior of calcium sulfate bioceramic. Ceramics International, 41, 1155–1162.CrossRefGoogle Scholar
  16. 16.
    Haynes, W. M. (Ed.). (2011). CRC handbook of chemistry and physics (92nd ed.). Boca Raton: CRC Press.Google Scholar
  17. 17.
    Mendelson, M. I. (1969). Average grain size in polycrystalline ceramics. Journal of the American Ceramic Society, 52, 443.CrossRefGoogle Scholar
  18. 18.
    Kelly, C. M., Wilkins, R. M., Gitelis, S., Hartjen, C., Watson, J. T., & Kim, P. T. (2001). The use of a surgical grade calcium sulfate as a bone graft substitute: Results of a multicenter trial. Clinical Orthopaedics and Related Research, 382, 42–50.CrossRefGoogle Scholar
  19. 19.
    Lazary, A., Balla, B., Kosa, J. P., Bacsi, K., Nagy, Z., Takacs, I., et al. (2007). Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells. Biomaterials, 28, 393–399.CrossRefGoogle Scholar
  20. 20.
    Coble, R. L. (1961). Sintering crystalline solids. I. Intermediate and final state diffusion models. Journal of Applied Physics, 32, 793–799.CrossRefGoogle Scholar
  21. 21.
    Lin, M., Zhang, L., Wang, J., Chen, X., Yang, X., Cui, W., et al. (2014). Novel highly bioactive and biodegradable gypsum/calcium silicate composite bone cements: From physicochemical characteristics to in vivo aspects. Journal of Materials Chemistry B, 2, 2030–2038.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, College of MedicineChang Gung UniversityTaoyuanTaiwan

Personalised recommendations