Journal of Medical and Biological Engineering

, Volume 37, Issue 6, pp 858–866 | Cite as

Development of Compact, Cost-effective, FPGA-Based Data Acquisition System for the iPET System

  • Eungi Min
  • Kwangdon Kim
  • Hakjae Lee
  • Hyun-Il Kim
  • Yong Hyun Chung
  • Yongkwon Kim
  • Jinhun Joung
  • Kyeong Min Kim
  • Sung-Kwan Joo
  • Kisung Lee
Original Article


Positron emission tomography (PET) is a nuclear medicine imaging technology used to analyze physiological processes. An in-beam PET is used to verify the delivered dose during ion-beam therapy. Our group investigates the prototype C-shaped PET system, which is called the iPET system. In this study, we develop an expendability-enhanced field-programmable gate array (FPGA)-based data acquisition system for the iPET. We organize this data acquisition (DAQ) system using only one DAQ board, to ensure a compact and cost-effective DAQ system. We design the FPGA using modular functions, which include synchronization, deserialization, pulse height analysis, and data packaging functions. As a result, energy spectra and well-separated 9 × 9 flood images of the entire detector module are achieved. We obtain reconstructed PET images of point source (4 mm diameter), three cylindrical phantoms (3 cm diameter), and four sphere phantoms (3.0, 2.2, 1.3 and 1.0 cm diameter). We achieve approximately 300 kcps of maximum single count rate. The obtained results prove the compactness and cost-effectiveness of the proposed DAQ system.


In-beam PET Data acquisition system Field-programmable gate array Modular function 



This research was supported by the National Research Foundation of Korea (NRF) Grant (2016R1A2B2007551), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) (20161520302180), and the Korea Institute of Radiological & Medical Sciences (2013K000092) funded by the Korean government.


  1. 1.
    Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine. Philadelphia: Elsevier Health Sciences.Google Scholar
  2. 2.
    Vaska, P., Woody, C. L., Schlyer, D. J., Shokouhi, S., Stoll, S. P., Pratte, J. F., et al. (2004). RatCAP: Miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Transactions on Nuclear Science, 51(5), 2718–2722.CrossRefGoogle Scholar
  3. 3.
    Crosetto, D. B. (2000). A modular VME or IBM PC based data acquisition system for multi-modality PET/CT scanners of different sizes and detector types. In Nuclear Science Symposium Conference Record, 2000 IEEE (Vol. 2, pp. 12/78–12/97).Google Scholar
  4. 4.
    Shao, Y. P., Cherry, S. R., Farahani, K., Meadors, K., Siegel, S., Silverman, R. W., et al. (1997). Simultaneous PET and MR imaging. Physics in Medicine & Biology, 42(10), 1965–1970.CrossRefGoogle Scholar
  5. 5.
    Fysikopoulos, E., Georgiou, M., Efthimiou, N., David, S., Loudos, G., & Matsopoulos, G. (2014). Fully digital FPGA-based data acquisition system for dual head PET detectors. IEEE Transactions on Nuclear Science, 61(5), 2764–2770.CrossRefGoogle Scholar
  6. 6.
    Ko, G. B., Yoon, H. S., Kwon, S. I., Hong, S. J., Lee, D. S., & Lee, J. S. (2011). Development of FPGA-based coincidence units with veto function. Biomedical Engineering Letters, 1(1), 27–31.CrossRefGoogle Scholar
  7. 7.
    Fysikopoulos, E., Loudos, G., Georgiou, M., David, S., & Matsopoulos, G. (2012). A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine. Measurement Science & Technology, 23(12), 125403.CrossRefGoogle Scholar
  8. 8.
    Hu, W., Choi, Y., Hong, K. J., Kang, J., Jung, J. H., Huh, Y. S., et al. (2012). Free-running ADC-and FPGA-based signal processing method for brain PET using GAPD arrays. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 664(1), 370–375.CrossRefGoogle Scholar
  9. 9.
    Imrek, J., Novak, D., Hegyesi, G., Kalinka, G., Molnár, J., Végh, J., et al. (2006). Development of an FPGA-based data acquisition module for small animal PET. IEEE Transactions on Nuclear Science, 53(5), 2698–2703.CrossRefGoogle Scholar
  10. 10.
    Enghardt, W., Crespo, P., Fiedler, F., Hinz, R., Parodi, K., Pawelke, J., et al. (2004). Charged hadron tumour therapy monitoring by means of PET. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 525(1), 284–288.CrossRefGoogle Scholar
  11. 11.
    Shao, Y., Sun, X., Lou, K., Zhu, X. R., Mirkovic, D., Poenisch, F., et al. (2014). In-beam PET imaging for on-line adaptive proton therapy: An initial phantom study. Physics in Medicine & Biology, 59(13), 3373.CrossRefGoogle Scholar
  12. 12.
    Fiedler, F., Kunath, D., Priegnitz, M., & Enghardt, W. (2012). Online irradiation control by means of PET. In U. Linz (Ed.), Ion beam therapy (pp. 527–543). Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Parodi, K., Enghardt, W., & Haberer, T. (2002). The potential of in-beam positron-emission-tomography for proton therapy monitoring: First phantom experiments. In Nuclear Science Symposium Conference Record, 2002 IEEE (Vol. 2, pp. 1193–1196).Google Scholar
  14. 14.
    Pawelke, J., Enghardt, W., Haberer, T., Hasch, B., Hinz, R., Krämer, M., et al. (1997). In-beam PET imaging for the control of heavy-ion tumour therapy. IEEE Transactions on Nuclear Science, 44(4), 1492–1498.CrossRefGoogle Scholar
  15. 15.
    Parodi, K., Saito, N., Chaudhri, N., Richter, C., Durante, M., Enghardt, W., et al. (2009). 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy. Medical Physics, 36(9), 4230–4243.CrossRefGoogle Scholar
  16. 16.
    Nakajima, Y., Hirano, Y., Tashima, H., Yoshida, E., Sato, S., Inaniwa, T., Kohno, T., Sihver, L., & Yamaya, T. (2013). Dosimetry by means of in-beam PET with RI beam irradiation. In Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE (pp. 1–3).Google Scholar
  17. 17.
    Shakirin, G., Braess, H., Fiedler, F., Kunath, D., Laube, K., Parodi, K., et al. (2011). Implementation and workflow for PET monitoring of therapeutic ion irradiation: A comparison of in-beam, in-room, and off-line techniques. Physics in Medicine & Biology, 56(5), 1281–1298.CrossRefGoogle Scholar
  18. 18.
    An, S. J., Beak, C.-H., Lee, K., & Chung, Y. H. (2013). A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 698, 37–43.CrossRefGoogle Scholar
  19. 19.
    Kim, H.-I., An, S. J., Lee, C., Jo, W., Min, E., Lee, K., et al. (2014). Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy. Journal of Instrumentation, 9(05), C05025.CrossRefGoogle Scholar
  20. 20.
    Min, E., Kim, H.-I., Kim, K., Lee, H., Bae, S., An, S. J., Kim, Y., Chung, Y. H., & Joung, J. (2013). FPGA-based multichannel data acquisition system for prototype in-beam PET. In Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE (pp. 1–4).Google Scholar
  21. 21.
    Kim, H. I., Chung, Y. H., Lee, K., Kim, K. M., Kim, Y., & Joung, J. (2016). Preliminary results of a prototype C-shaped PET designed for an in-beam PET system. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 822, 57–62.CrossRefGoogle Scholar
  22. 22.
    Yamaya, T., Yoshida, E., Inaniwa, T., Sato, S., Nakajima, Y., Wakizaka, H., et al. (2011). Development of a small prototype for a proof-of-concept of OpenPET imaging. Physics in Medicine & Biology, 56(4), 1123.CrossRefGoogle Scholar
  23. 23.
    Pawelke, J., Byars, L., Enghardt, W., Fromm, W., Geissel, H., Hasch, B., et al. (1996). The investigation of different cameras for in-beam PET imaging. Physics in Medicine & Biology, 41(2), 279.CrossRefGoogle Scholar
  24. 24.
    Lewellen, T., Miyaoka, R., MacDonald, L., DeWitt, D., Haselman, M., & Hauck, S. (2010). Evolution of the design of a second generation FireWire based data acquisition system. In Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE (pp. 2510–2514).Google Scholar
  25. 25.
  26. 26.
    Texas Instruments ADS5272.
  27. 27.
  28. 28.
    Mashino, H., & Yamamoto, S. (2007). Development of a compact and flexible data acquisition system for K-PETs. In World Congress on Medical Physics and Biomedical Engineering 2006 (pp. 1722–1725).Google Scholar
  29. 29.
    Sportelli, G., Belcari, N., Guerra, P., Spinella, F., Franchi, G., Attanasi, F., et al. (2011). Reprogrammable acquisition architecture for dedicated positron emission tomography. IEEE Transactions on Nuclear Science, 58(3), 695–702.CrossRefGoogle Scholar
  30. 30.
    Sportelli, G., Belcari, N., Camarlinghi, N., Cirrone, G., Cuttone, G., Ferretti, S., et al. (2013). First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system. Physics in Medicine & Biology, 59(1), 43.CrossRefGoogle Scholar
  31. 31.
    Vecchio, S., Attanasi, F., Belcari, N., Camarda, M., Cirrone, G. P., Cuttone, G., et al. (2009). A PET prototype for “in-beam” monitoring of proton therapy. IEEE Transactions on Nuclear Science, 56(1), 51–56.CrossRefGoogle Scholar
  32. 32.
    Tashima, H., Yoshida, E., Inadama, N., Nishikido, F., Nakajima, Y., Wakizaka, H., et al. (2016). Development of a small single-ring OpenPET prototype with a novel transformable architecture. Physics in Medicine & Biology, 61(4), 1795.CrossRefGoogle Scholar
  33. 33.
    Ren, S., Yang, Y., & Cherry, S. R. (2014). Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Medical Physics, 41(7), 072503.CrossRefGoogle Scholar
  34. 34.
    Ramirez, R. A., Liu, S., Liu, J., Zhang, Y., Kim, S., Baghaei, H., et al. (2008). High-resolution L (Y) SO detectors using PMT-quadrant-sharing for human and animal PET cameras. IEEE Transactions on Nuclear Science, 55(3), 862–869.CrossRefGoogle Scholar
  35. 35.
    Parodi, K. (2012). PET monitoring of hadrontherapy. Nuclear Medicine Review, 15, C37–C42.Google Scholar
  36. 36.
    Nishio, T., Sato, T., Kitamura, H., Murakami, K., & Ogino, T. (2005). Distributions of β + decayed nuclei generated in the CH2 and H2O targets by the target nuclear fragment reaction using therapeutic MONO and SOBP proton beam. Medical Physics, 32(4), 1070–1082.CrossRefGoogle Scholar
  37. 37.
    Parodi, K., Paganetti, H., Cascio, E., Flanz, J. B., Bonab, A. A., Alpert, N. M., et al. (2007). PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants. Medical Physics, 34(2), 419–435.CrossRefGoogle Scholar
  38. 38.
    Haselman, M., Pasko, J., Hauck, S., Lewellen, T., & Miyaoka, R. (2012). FPGA-based pulse pile-up correction with energy and timing recovery. IEEE Transactions on Nuclear Science, 59(5), 1823–1830.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Eungi Min
    • 1
    • 2
  • Kwangdon Kim
    • 1
    • 2
  • Hakjae Lee
    • 2
    • 3
  • Hyun-Il Kim
    • 4
    • 5
  • Yong Hyun Chung
    • 4
  • Yongkwon Kim
    • 3
    • 6
  • Jinhun Joung
    • 6
  • Kyeong Min Kim
    • 7
  • Sung-Kwan Joo
    • 8
  • Kisung Lee
    • 2
    • 3
  1. 1.Department of IT ConvergenceKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Bio-convergence EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.School of Biomedical EngineeringKorea UniversitySeoulRepublic of Korea
  4. 4.Department of Radiation Convergence EngineeringYonsei UniversityWonjuRepublic of Korea
  5. 5.Korea Institute of Nuclear SafetyDaejeonRepublic of Korea
  6. 6.NuCare Inc.IncheonRepublic of Korea
  7. 7.Division of Medical Radiation EquipmentKorea Institute of Radiological and Medical SciencesSeoulRepublic of Korea
  8. 8.School of Electrical EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations