Journal of Medical and Biological Engineering

, Volume 37, Issue 1, pp 112–122 | Cite as

Three-Dimensional Reconstruction and Visualization of Human Enamel Ex Vivo Using High-Frequency Ultrasound

  • Juan Du
  • Xue-Li Mao
  • Peng-Fei Ye
  • Qing-Hua HuangEmail author
Original Article


Dental decay and erosion are common cases in clinics. It would be useful for dentists to collect adequate information about the thickness of hard tissue (e.g., enamel and dentin) during treatment without pulp exposure. This study proposes a scanning system that collects structural information of the tooth surface and enamel-dentine junction. A three-dimensional (3D) motorized scanning stage is used to control the movement trajectories of an A-mode transducer to acquire echoes from the surface of a tooth. The 3D form of enamel is reconstructed using this system. By adopting a gain compensation method for radio-frequency signals, no special preparation is required before scanning. Despite some discontinuous areas in the 3D images, the 3D representations of human molars well duplicated the real samples and the thickness of enamel could be measured. Based on micro-computed tomography data, the overall measurement error of the proposed system is 3.55%, indicating good performance for clinical application.


Human tooth Enamel thickness Three-dimensional (3D) reconstruction High-frequency ultrasound Mechanical scanning 



This work was supported by National Natural Science Foundation of China (Grants 61271314, 61372007, 61401286 and 61571193), Guangdong Provincial Natural Science Foundation (Grant S2012010009885), International Cooperation Project of Science and Technology of Guangdong Province (Grant 2014A050503020), Guangzhou Key Lab of Body Data Science (Grant 201605030011), and National Engineering Technology Research Center for Mobile Ultrasonic Detection (Grant 2013FU125X02).


  1. 1.
    Ghorayeb, S. R., & Valle, T. (2002). Experimental evaluation of human teeth using noninvasive ultrasound: Echodentography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, 1437–1443.CrossRefGoogle Scholar
  2. 2.
    Mahmoud, A. M., Mukdadi, O. M., Ngan, P., & Crout, R. (2011). High resolution ultrasound imaging for jawbone surface. In Proceedings of 1st middle east conference on biomedical engineering (pp. 252–255).Google Scholar
  3. 3.
    Culjat, M. O., Singh, R. S., Yoon, D. C., & Brown, E. R. (2003). Imaging of human tooth enamel using ultrasound. IEEE Transactions on Medical Imaging, 22, 526–529.CrossRefGoogle Scholar
  4. 4.
    Baum, G., Greenwood, I., Slawskie, S., & Smirnow, R. (1963). Observation of internal structures of teeth by ultrasonography. Science, 139, 495–496.CrossRefGoogle Scholar
  5. 5.
    Culjat, M. O., Singh, R. S., Brown, E. R., Neurgaonkar, R. R., Yoon, D. C., & White, S. N. (2005). Ultrasound crack detection in a simulated human tooth. Dentomaxillofacial Radiology, 34, 80–85.CrossRefGoogle Scholar
  6. 6.
    Matalon, S., Feuerstein, O., Calderon, S., Mittleman, A., & Kaffe, I. (2007). Detection of cavitated carious lesions in approximal tooth surfaces by ultrasonic caries detector. Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontology, 103, 109–113.CrossRefGoogle Scholar
  7. 7.
    Ng, S., Payne, P., & Ferguson, M. (1993). Ultrasonic imaging of experimentally induced tooth decay. Proceedings of International Conference of Acoustic Sensing and Imaging, 369, 82–86.Google Scholar
  8. 8.
    Huysmans, M., & Thijssen, J. (2000). Ultrasonic measurement of enamel thickness: A tool for monitoring dental erosion? Journal of Dentistry, 28, 187–191.CrossRefGoogle Scholar
  9. 9.
    Louwersea, C., Kjaeldgaardb, M., & Huysmansc, M. (2004). The reproducibility of ultrasonic enamel thickness measurements: An in vitro study. Journal of Dentistry, 32, 83–89.CrossRefGoogle Scholar
  10. 10.
    Toda, S., Fujita, T., Arakawa, H., & Toda, K. (2005). An ultrasonic nondestructive technique for evaluating layer thickness in human teeth. Sensors & Actuators, A Physica, 125, 1–9.CrossRefGoogle Scholar
  11. 11.
    Hughes, D. A., Girkin, J. M., Poland, S., Longbottom, C., Button, T. W., Elgoyhen, J., et al. (2009). Investigation of dental samples using a 35 MHz focused ultrasound piezocomposite transducer. Ultrasonics, 49, 212–218.CrossRefGoogle Scholar
  12. 12.
    Hughes, D.A., Button, T. W., Cochran, S., Elgoyhen, J., Girkin, J. M., Hughes, H., Longbottom, C., Meggs, C., & Poland, S., (2007). 3D imaging of teeth using high frequency ultrasound. In Proceedings of IEEE ultrasonics symposium (pp. 327–330).Google Scholar
  13. 13.
    Heger, S., Vollborn, T., Tinschert, J., Wolfart, S., Chuembou, F., & Rademacher, K., (2011). High-frequency (75 MHz) ultrasound based tooth digitization using sparse spatial compounding. In Proceedings of IEEE ultrasonics symposium (pp. 2257–2260).Google Scholar
  14. 14.
    Pekam, F. C., Marotti, J., Wolfart, S., Tinschert, J., Radermacher, K., & Heger, S. (2015). High-Frequency ultrasound as an option for scanning of prepared teeth: An in vitro study. Ultrasound in Medicine and Biology, 41, 309–316.CrossRefGoogle Scholar
  15. 15.
    Sun, X., Witzel, E. A., Bian, H., & Kang, S. (2008). 3-D finite element simulation for ultrasonic propagation in tooth. Journal of Dentistry, 36, 546–553.CrossRefGoogle Scholar
  16. 16.
    Huang, Q. H., Yang, Z., Hu, W., Jin, L. W., Wei, G., & Li, X. L. (2013). Linear tracking for 3D medical ultrasound Imaging. IEEE Transactions on Cybernetics, 43, 1747–1754.CrossRefGoogle Scholar
  17. 17.
    Huang, Q. H., Zheng, Y. P., Lu, M. H., & Chi, Z. R. (2005). Development of a portable 3D ultrasound imaging system for musculoskeletal tissues. Ultrasonics, 43, 153–163.CrossRefGoogle Scholar
  18. 18.
    Fischer, F., Selver, M. A., Gezer, S., Dicle, O., & Hillen, W. (2015). Systematic parameterization, storage, and representation of volumetric DICOM data. Journal of Medical and Biological Engineering, 35, 709–723.CrossRefGoogle Scholar
  19. 19.
    Lee, D., Kim, Y. S., & Ra, J. B. (2006). Automatic time gain compensation and dynamic range control in ultrasound imaging systems. Proceedings of International Society of Optical Engineering, 6147, 14708.Google Scholar
  20. 20.
    Tang, M., Luo, F., & Liu, D., (2009). Automatic time gain compensation in ultrasound imaging system. In Proceedings of international conference on bioinformatics and biomedical engineering (pp. 2013–2016).Google Scholar
  21. 21.
    Sten, R. S., & Hans, T., Estimating frequency dependent attenuation to improve automatic time gain compensation in B-mode imaging. In Proceedings of IEEE ultrasonics symposium (pp. 1322–1325).Google Scholar
  22. 22.
    Girault, J. M., Ossant, F., Ouahabi, A., Kouame, D., & Patat, F. (1998). Time-varying autoregressive spectral estimation for ultrasound attenuation in tissue characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45, 650–659.CrossRefGoogle Scholar
  23. 23.
    Huang, Q. H., & Zheng, Y. P. (2008). Volume reconstruction of freehand three-dimensional ultrasound using median filters. Ultrasonic, 48, 182–192.CrossRefGoogle Scholar
  24. 24.
    Huang, Q. H., Zheng, Y. P., Lu, M. H., Wang, T. F., & Chen, S. P. (2009). A new adaptive interpolation algorithm for 3D ultrasound imaging with speckle reduction and edge preservation. Computerized Medical Imaging and Graphics, 33, 100–110.CrossRefGoogle Scholar
  25. 25.
    Huang, Q. H., Lu, M. H., Zheng, Y. P., & Chi, Z. R. (2009). Speckle suppression and contrast enhancement in reconstruction of freehand 3-D ultrasound images using an adaptive distance-weighted method. Applied Acoustics, 70, 21–30.CrossRefGoogle Scholar
  26. 26.
    Huang, Q. H., Huang, Y. P., Hu, W., & Li, X. L. (2015). Bezier interpolation for 3D freehand ultrasound systems. IEEE Transactions Human-Machine Systems, 45, 385–392.CrossRefGoogle Scholar
  27. 27.
    Slak, B., Ambroziak, A., Strumban, E., & Maev, R. G. (2011). Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure. Acta of Bioengineering and Biology, 13, 65–70.Google Scholar
  28. 28.
    Gao, H. T., Huang, Q. H., Xu, X. M., & Li, X. L. (2016). Wireless and sensorless 3D ultrasound imaging. Neurocomputing, 196, 159–171.CrossRefGoogle Scholar
  29. 29.
    Chen, Z. H., Chen, Y. D., & Huang, Q. H. (2016). Development of a wireless and near real-time 3D ultrasound strain imaging system. IEEE Transactions on Biomedical Circuits and Systems, 10, 394–403.CrossRefGoogle Scholar
  30. 30.
    Huang, Q. H., Xie, B., Ye, P. F., & Chen, Z. H. (2015). 3D Ultrasound Strain Imaging based on a Linear Scanning System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 392–400.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Juan Du
    • 1
    • 2
    • 3
  • Xue-Li Mao
    • 4
  • Peng-Fei Ye
    • 1
  • Qing-Hua Huang
    • 1
    • 2
    Email author
  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.College of Information EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.School of Information EngineeringGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  4. 4.Guanghua College of StomatologySun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations