Skip to main content
Log in

Preoperative Treatment Planning Method for Magnetically Induced Hyperthermia Using Thermoseeds

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a preoperative planning method for magnetically induced hyperthermia (MIH) using ferromagnetic thermoseeds based on clinical computed tomography images. Combined with external alternating magnetic field excitation, the heating model of millimeter-sized cylindrical thermoseeds and the three-dimensional (3D) tissue bio-heat conduction model are established. The Arrhenius model is employed to evaluate the thermal injury degree of tumors and surrounding normal tissues. Based on these methods, MIH treatment planning system software is developed, where the 3D real-time model of patient anatomy is reconstructed with graphics processing unit-accelerated visualization techniques, organs and tumors are segmented, and thermoseeds are conformal-implanted to establish the temperature field distribution and the necrosis zone. This paper can provide guidance on establishment of a rational MIH preoperative planning to prediction and control of the effective therapeutic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Franckena, M. (2012). Review of radiotherapy and hyperthermia in primary cervical cancer. International Journal of Hyperthermia, 28(6), 543–548.

    Article  Google Scholar 

  2. Gilchrist, R., Medal, R., Shorey, W., Hanselman, R., Parrott, J., & Taylor, C. (1957). Selective inductive heating of lymph nodes. Annals of Surgery, 146(4), 596–606.

    Article  Google Scholar 

  3. Kobayashi, T., Kida, Y., Tanaka, T., Hattori, K., Matsui, M., & Amemiya, Y. (1991). Interstitial hyperthermia of malignant brain tumors by implant heating system: Clinical experience. J Neuro-Oncol, 10(2), 153–163.

    Article  Google Scholar 

  4. Kobayashi, T., & Kida, Y. (1992). Interstitial hyperthermia of malignant brain tumors by an implant heating system using stereotactic techniques. Stereotactic and Functional Neurosurgery, 59(1–4), 123–127.

    Article  Google Scholar 

  5. Kaur, P., Hurwitz, M., Krishnan, S., & Asea, A. (2011). Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers, 3(4), 3799–3823.

    Article  Google Scholar 

  6. Thiesen, B., & Jordan, A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 24(6), 467–474.

    Article  Google Scholar 

  7. Tucker, R., Huidobro, C., Larson, T., & Platz, C. (2000). Use of permanent interstitial temperature self-regulating rods for ablation of prostate cancer. Journal of Endourology, 14(6), 511–517.

    Article  Google Scholar 

  8. Tucker, R., Platz, C., Huidobro, C., & Larson, T. (2002). Interstitial thermal therapy in patients with localized prostate cancer: Histologic analysis. Urology, 60(1), 166–169.

    Article  Google Scholar 

  9. Tucker, R. (2003). Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer. Journal of Endourology, 17(8), 601–607.

    Article  Google Scholar 

  10. Tucker, R., Huidobro, C., & Larson, T. (2005). Ablation of stage T 1/T 2 prostate cancer with permanent interstitial temperature self-regulating rods. Journal of Endourology, 19(7), 865–867.

    Article  Google Scholar 

  11. Kumar, C., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789–808.

    Article  Google Scholar 

  12. Deger, S., Taymoorian, K., Boehmer, D., Schink, T., Roigas, J., Wille, A., et al. (2004). Thermoradiotherapy using interstitial self-regulating thermoseeds: An intermediate analysis of a phase ii trial. European Urology, 45(5), 574–580.

    Article  Google Scholar 

  13. Master, V., Shinohara, K., & Carroll, P. (2004). Ferromagnetic thermal ablation of locally recurrent prostate cancer: Prostate specific antigen results and immediate/intermediate morbidities. The Journal of Urology, 172(6), 2197–2202.

    Article  Google Scholar 

  14. Zhao, L., Liu, J., Ouyang, W., Li, D., Li, L., Li, L., et al. (2013). Magnetic-mediated hyperthermia for cancer treatment: Research progress and clinical trials. Chinese Physics B, 22(10), 108104.

    Article  Google Scholar 

  15. Yue, K., Zheng, S., Luo, Y., Zhang, X., & Tang, J. (2011). Determination of the 3D temperature distribution during ferromagnetic hyperthermia under the influence of blood flow. Journal of Thermal Biology, 36(8), 498–506.

    Article  Google Scholar 

  16. Zhuo, Z., Wang, J., Zhai, W., Wang, H., & Tang, J. (2014). Numerical modeling and simulation of temperature distribution uncertainty subject to ferromagnetic thermoseeds hyperthermia. Chinese Science Bulletin, 59(12), 1317–1325.

    Article  Google Scholar 

  17. Carretero, C., Lucia, O., Acero, J., Alonso, R., & Burdio, J. (2012). Frequency-dependent modelling of domestic induction heating systems using numerical methods for accurate time-domain simulation. IET Power Electronics, 5(8), 1291.

    Article  Google Scholar 

  18. Haider, S., Cetas, T., Wait, J., & Chen, J. (1991). Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization. IEEE Transactions on Microwave Theory and Techniques, 39(11), 1817–1827.

    Article  Google Scholar 

  19. Bernstein, (1948). The effect of intra-arterial injection of adrenalin upon blood flow of the human forearm. American Heart Journal, 35(5), 828.

    Google Scholar 

  20. Liu, J., & Deng, Z. S. (2008). Physics of tumor hyperthermia. Beijing: Science Press.

    Google Scholar 

  21. Wang, H., Wu, J., Zhuo, Z., & Tang, J. (2016). A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia. Technology and Health Care, 24(s2), S827–S839.

    Article  Google Scholar 

  22. Müller, G. J., & Roggan, A. (1995). Laser-induced interstitial thermotherapy. Bellingham: SPIE Press.

    Google Scholar 

  23. Liang, P. (2013). Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World Journal of Gastroenterology, 19(33), 5430.

    Article  Google Scholar 

  24. Jiang, S., & Zhang, X. (2005). Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT). Lasers in Medical Science, 19(4), 197–202.

    Article  Google Scholar 

  25. He, X., & Bischof, J. (2005). The Kinetics of thermal injury in human renal carcinoma cells. Annals of Biomedical Engineering, 33(4), 502–510.

    Article  Google Scholar 

  26. Diller, K. (1994). The mechanisms and kinetics of heat injury accumulation. Annals of the New York Academy of Sciences, 720(1), 38–55.

    Article  Google Scholar 

  27. Bhowmick, S. (1999). Supraphysiological thermal injury in dunning AT-1 prostate tumor cells. Journal of Biomechanical Engineering, 122(1), 51.

    Article  Google Scholar 

  28. He, X., & Bischof, J. (2003). Quantification of temperature and injury response in thermal therapy and cryosurgery. Critical Reviews Biomedical Engineering, 31(5–6), 355–422.

    Article  Google Scholar 

  29. Rieder, C., Kroeger, T., Schumann, C., & Hahn, H. (2011). GPU-based real-time approximation of the ablation zone for radiofrequency ablation. IEEE Transactions on Visualization and Computer Graphics, 17(12), 1812–1821.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijing Municipal Science and Technology Commission (Grant Z11110006-7311053) and the National Science and Technology Support Program of China (Grant 2012BAI15B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintian Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, J., Zhang, X. et al. Preoperative Treatment Planning Method for Magnetically Induced Hyperthermia Using Thermoseeds. J. Med. Biol. Eng. 36, 726–732 (2016). https://doi.org/10.1007/s40846-016-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0171-7

Keywords

Navigation