Advertisement

Development and Evaluation of Novel Magnetic Actuated Microrobot with Spiral Motion Using Electromagnetic Actuation System

  • 248 Accesses

  • 11 Citations

Abstract

In this study, a magnetic spiral microrobot is proposed for tasks such as diagnosis, drug delivery, and minimally invasive surgery. It has a compact structure with a wireless power supply, low voltage, and a long working time. The microrobot is comprised of a spiral outer shell based on the Archimedes screw structure and an O-ring magnet for an actuator. The Archimedes screw structure produces an axial propulsive force due to the torsional moment generated by a magnetic field and embedded magnet, which rotates in the direction of interest. Microrobots with different numbers of spirals are manufactured to evaluate the effect of spiral number on speed. Moreover, we developed an electromagnetic actuation system to accomplish wireless real-time control via a Phantom Omni device. By adjusting the control signals, the microrobot achieved flexible motion in a pipe with good performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Yu, C., Kim, J., Choi, H., Choi, J., Jeong, S., Cha, K., et al. (2010). Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sensors and Actuators A: Physical, 161, 297–304.

  2. 2.

    Onogi, S., Nakajima, Y., Koyama, T., Tamura, Y., Kobayashi, E., Sakuma, I., et al. (2013). Robotic vertebral puncture system for percutaneous vertebroplasty. Journal of Medical and Biological Engineering, 33, 491–496.

  3. 3.

    Rodríguez, A. B., Ramirez, A. R. G., Pieri, E. R. D., Lopez, A. L., & Albornoz, A. D. C. D. (2012). An approach for robot-based odor navigation. Journal of Medical and Biological Engineering, 32, 453–456.

  4. 4.

    Pan, Q., Guo, S., & Okada, T. (2011). A novel hybrid wireless microrobot. International Journal of Mechatronics and Automation, 1, 60–69.

  5. 5.

    Khamesee, M. B., Kato, N., Nomura, Y., & Nakamura, T. (2002). Design and control of a microrobotic system using magnetic levitation. IEEE-ASME Transactions on Mechatronics, 7, 1–14.

  6. 6.

    Abbott, J. J., Ergeneman, O., Kummer, M., Hirt, A., & Nelson, B. J. (2007). Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Transactions on Robotics, 23, 1247–1251.

  7. 7.

    Yesin, K. B., Vollmers, K., & Nelson, B. J. (2006). Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. International Journal of Robotics Research, 25, 527–536.

  8. 8.

    Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive controller and observer for a magnetic microrobot. IEEE Transactions on Robotics, 29, 1060–1067.

  9. 9.

    Fu, Q., Guo, S., & Yamauchi, Y. (2014). A control system of the wireless microrobots in pipe. In Proceedings of IEEE International Conference on Mechatronics and Automation (pp. 1995–2000)

  10. 10.

    Lee, J. S., Kim, B., & Hong, Y. S. (2009). A flexible chain-based screw propeller for capsule endoscopes. The International Journal of Precision Engineering and Manufacturing, 10, 27–34.

  11. 11.

    Choi, H., Choi, J., Jeong, S., Yu, C., Park, J., & Park, S. (2009). Two dimensional locomotion of microrobot with novel stationary electromagnetic actuation system. Smart Materials and Structures, 18, 1–6.

  12. 12.

    Yu, M. (2002). M2A™ capsule endoscopy—A breakthrough diagnostic tool for small intestine imaging. Gastroenterology Nursing, 25, 24–27.

  13. 13.

    Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259–1272.

  14. 14.

    Kim, S. H., & Ishiyama, K. (2014). Magnetic robot and manipulation for active-locomotion with targeted drug release. IEEE-ASME Transactions on Mechatronics, 19, 1651–1659.

  15. 15.

    Choi, K., Jang, G., Jeon, S., & Nam, J. (2014). Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Transactions on Magnetics, 50, 1–4.

  16. 16.

    Guo, S., Fukuda, T., & Asaka, K. (2002). Fish-like underwater microrobot with 3 DOF. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 738–743)

  17. 17.

    Guo, S., Fukuda, T., & Asaka, K. (2003). A new type of fish-like underwater microrobot. IEEE-ASME Transactions on Mechatronics, 8, 136–141.

  18. 18.

    Moglia, A., Menciassi, A., Schurr, M. O., & Dario, P. (2007). Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems. Biomedical Microdevices, 9, 235–243.

  19. 19.

    Rentschler, M. E., & Oleynikov, D. (2007). Recent in vivo surgical robot and mechanism developments. Surgical Endoscopy, 21, 1477–1481.

  20. 20.

    Gao, B., Guo, S., & Ye, X. (2011). Motion-control analysis of ICPF-actuated underwater biomimetic microrobots. International Journal of Mechatronics and Automation, 1, 79–89.

  21. 21.

    Kim, B., Lee, S., Park, J. H., & Park, J. O. (2005). Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE-ASME Transactions on Mechatronics, 10, 77–86.

  22. 22.

    Fukuda, T., Hosokai, H., Ohyama, H., Hashimoto, H., & Arai, F. (1991). Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables. In Micro structures, sensors, actuators, machines and robots (pp. 210–215)

  23. 23.

    Honda, T., Sakashita, T., Narahashi, K., & Yamasaki, J. (2001). Swimming properties of bending-type magnetic micro-machine. Journal Magnetics Society of Japan, 4, 1175–1178.

  24. 24.

    Mei, T., Chen, Y., Fu, G., & Kong, D. (2002). Wireless drive and control of a swimming microrobot. In Proceedings of IEEE international conference on robotics and automation (pp. 1131–1136)

  25. 25.

    Pan, Q., & Guo, S. (2007) Mechanism and control of a novel type of microrobot for biomedical application. In Proceedings of IEEE international conference on robotics and automation (pp. 187–192)

  26. 26.

    Guo, S., Pan, Q., & Khamesee, M. B. (2008). Development of a novel type of microrobot for biomedical application. Microsystem Technologies, 14, 307–314.

  27. 27.

    Pan, Q., & Guo, S. (2009). A paddling type of microrobot in pipe. In Proceedings of IEEE international conference on robotics and automation (pp. 2995–3000)

  28. 28.

    Fountain, T. W. R., Kailat, P. V., & Abbott, J. J. (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. In Proceedings of IEEE international conference on robotics and automation (pp. 576–581)

  29. 29.

    Yim, S., & Sitti, M. (2012). Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Transactions on Robotics, 28, 183–193.

  30. 30.

    Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K., et al. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 1434–1447.

  31. 31.

    Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.

  32. 32.

    Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.

  33. 33.

    Fu, Q., Guo, S., Yamauchi, Y., Hirata, H., & Ishihara, H. (2015). A novel hybrid microrobot using rotational magnetic field for medical applications. Biomedical Microdevices, 17, 1–12.

Download references

Acknowledgments

This research was partly supported by the National Natural Science Foundation of China (61375094), Key Research Program of the Natural Science Foundation of Tianjin (13JCZDJC26200), National High-Tech Research and Development Program of China (2015AA043202), JSPS KAKENHI (grant 15K2120), and Kagawa University Characteristic Prior Research Fund 2015.

Author information

Correspondence to Qiang Fu or Shuxiang Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 5911 kb)

Supplementary material 1 (AVI 5911 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Guo, S., Huang, Q. et al. Development and Evaluation of Novel Magnetic Actuated Microrobot with Spiral Motion Using Electromagnetic Actuation System. J. Med. Biol. Eng. 36, 506–514 (2016). https://doi.org/10.1007/s40846-016-0147-7

Download citation

Keywords

  • Magnetic spiral microrobot
  • Electromagnetic actuation system
  • Archimedes screw structure
  • Wireless power supply