Effect of Electron Beam Treatment in Air on Surface Properties of Ultra-High-Molecular-Weight Polyethylene

  • Irina Yu. Grubova
  • Maria A. Surmeneva
  • Vladimir V. Shugurov
  • Nikolay N. Koval
  • Irina I. Selezneva
  • Sergei M. Lebedev
  • Roman A. Surmenev
Original Article

Abstract

In this study, ultra-high-molecular-weight polyethylene (UHMWPE) was treated by an electron beam (EB) in air to obtain polar hydroxyl and carbonyl functional groups, which originated from oxidizing agents, to improve hydrophobicity and cell adhesion (NCTC clone L929). Sample characterization using Fourier transform-infrared spectroscopy revealed the presence of carbonyl oxidation products, whose intensity and surface roughness increased with increasing irradiation dose. The substitution of polar groups into the surface layers of the polymers resulted in a decreased water contact angle. The observed differences in the water contact angle of untreated polymers relative to that of the treated samples can be attributed not only to the differences in their respective molecular composition but also to their distinct roughness values. The treatment conditions affected the adhesion characteristics of fibroblasts. The untreated polymer and the surfaces treated at 10.7 kGy maintained the adhesion, spreading, and proliferation of fibroblasts. The hydrophilic polymer treated at 46.5 and 106.5 kGy maintained only the initial adhesion of fibroblasts. Thus, this study shows that EB treatment is a useful tool for modifying the surface properties of UHMWPE for particular biomedical applications. For example, the initially hydrophobic surface of UHMWPE can be made either hydrophilic or moderately hydrophobic by varying the surface treatment procedure using EB.

Keywords

Surface treatment Polymer Wettability Topography Electron beam Ultra-high-molecular-weight polyethylene Cells 

Notes

Acknowledgments

This research was supported by the Russian President grant (MK-6459.2016.8), the state-order NAUKA (#1359). The authors would like to express their gratitude to M.S. Vorobyov from the Institute of High Current Electronics, Tomsk, Russia for the EB processing of polymers.

References

  1. 1.
    Chow, D., Nunalee, M. L., Lim, D. W., Simnick, A. J., & Chilkoti, A. (2008). Peptide-based biopolymers in biomedicine and biotechnology. Materials Science and Engineering R Reports, 62, 125–155.CrossRefGoogle Scholar
  2. 2.
    Kashyap, N., Kumar, N., & Kumar, M. N. (2005). Hydrogels for pharmaceutical and biomedical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 22, 107–149.CrossRefGoogle Scholar
  3. 3.
    Matsumura, Y., & Kataoka, K. (2009). Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Science, 100, 572–579.CrossRefGoogle Scholar
  4. 4.
    Absolom, D. R., Hawthorn, L. A., & Chang, G. (1988). Endothelialization of polymer surfaces. Journal of Biomedical Materials Research, 22, 271–285.CrossRefGoogle Scholar
  5. 5.
    Riveiro, A., Soto, R., del Val, J., Comesaña, R., Boutinguiza, M., Quintero, F., et al. (2014). Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications. Applied Surface Science, 302, 236–242.CrossRefGoogle Scholar
  6. 6.
    Steele, J. G., Dalton, B. A., Johnson, G., & Underwood, P. A. (1993). Polystyrene chemistry affects vitronectin activity: An explanation for cell attachment to tissue culture polystyrene but not to unmodified polystyrene. Journal of Biomedical Materials Research, 27, 927–940.CrossRefGoogle Scholar
  7. 7.
    Riveiro, A., Soto, R., Comesaña, R., Boutinguiza, M., del Val, J., Quintero, F., et al. (2012). Laser surface modification of PEEK. Applied Surface Science, 258, 9437–9442.CrossRefGoogle Scholar
  8. 8.
    Assero, G., Satriano, C., Lupo, G., Anfuso, C. D., Marletta, G., & Alberghina, M. (2004). Pericyte adhesion and growth onto polyhydroxymethylsiloxane surfaces nanostructured by plasma treatment and ion irradiation. Microvascular Research, 68, 209–220.CrossRefGoogle Scholar
  9. 9.
    Thom, V. H., Altankov, G., Groth, Th, Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Optimizing cell-surface interactions by photografting of poly (ethylene glycol). Langmuir, 16, 2756–2765.CrossRefGoogle Scholar
  10. 10.
    Atta, A., Fawzy, Y. H. A., Bek, A., Abdel-Hamid, H. M., & El-Oker, M. M. (2013). Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation. Nuclear Instruments and Methods in Physics Research Section B, 300, 46–53.CrossRefGoogle Scholar
  11. 11.
    Bykova, I., Weinhardt, V., Kashkarova, A., Lebedev, S., Baumbach, T., Pichugin, V., et al. (2014). Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation. Journal of Materials Science: Materials in Medicine, 25, 1843–1852.Google Scholar
  12. 12.
    Kaklamani, G., Mehrban, N., Chen, J., Bowen, J., Dong, H., Grover, L., & Stamboulis, A. (2010). Effect of plasma surface modification on the biocompatibility of UHMWPE. Biomedical Materials, 5, 05410201–05410210.CrossRefGoogle Scholar
  13. 13.
    Reznickova, A., Novotna, Z., Kolska, Z., Kasalkova, N. S., Rimpelova, S., & Svorcik, V. (2015). Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Materials Science and Engineering: C, 52, 259–266.CrossRefGoogle Scholar
  14. 14.
    Badey, J. P., Espuche, E., Saga, D., Chabert, B., Jugnet, Y., Batier, C., & Duc, T. M. (1996). A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene. Polymer, 37, 1377–1386.CrossRefGoogle Scholar
  15. 15.
    Clark, D. T., & Dilks, A. (1978). ESCA applied to polymers. XVIII. RF glow discharge modification of polymers in helium, neon, argon, and krypton. Journal of Polymer Science: Polymer Chemistry Edition, 16, 911–936.Google Scholar
  16. 16.
    O’Kell, S., Henshaw, T., Farrow, G., Aindow, M., & Jones, C. (1995). Effects of low-power plasma treatment on polyethylene surfaces. Surface and Interface Analysis, 23, 319–327.CrossRefGoogle Scholar
  17. 17.
    Pringle, S. D., Joss, V. S., & Jones, C. (1996). Ammonia plasma treatment of PTFE under known plasma conditions. Surface and Interface Analysis, 24, 821–829.CrossRefGoogle Scholar
  18. 18.
    Abdul-Kader, A. M., Turos, A., Radwan, R. M., & Kelany, A. M. (2009). Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation. Applied Surface Science, 255, 7786–7790.CrossRefGoogle Scholar
  19. 19.
    Ahad, I. U., Bartnik, A., Fiedorowicz, H., Kostecki, J., Korczyc, B., Ciach, T., & Brabazon, D. (2014). Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research Part A, 102, 3298–3310.CrossRefGoogle Scholar
  20. 20.
    Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers. Journal of the Mechanical Behavior of Biomedical Materials, 17, 252–268.CrossRefGoogle Scholar
  21. 21.
    Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49, 1782–1795.CrossRefGoogle Scholar
  22. 22.
    Qu, S., Liu, A., Liu, X., Bai, Y., & Weng, J. (2012). Study on drug release of and biological response to UHMWPE wear debris carrying estradiol. Applied Surface Science, 262, 168–175.CrossRefGoogle Scholar
  23. 23.
    Turell, M. B., & Bellare, A. (2004). A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene. Biomaterials, 25, 3389–3398.CrossRefGoogle Scholar
  24. 24.
    Wei, J., Igarashi, T., Okumori, N., Maetani, T., Liu, B., & Yoshinari, M. (2009). Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomedical Materials, 4, 04500201–04500207.CrossRefGoogle Scholar
  25. 25.
    Yildirim, E. D., Besunder, R., Pappas, D., Allen, F., Guceri, S., & Sun, W. (2010). Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication, 2, 01401901–01401912.CrossRefGoogle Scholar
  26. 26.
    Abdul-Kader, A. M. (2013). The optical band gap and surface free energy of polyethylene modified by electron beam irradiations. Journal of Nuclear Materials, 435, 231–235.CrossRefGoogle Scholar
  27. 27.
    Koval, N. N., Kreindel, Y. E., Tolkachyov, V. S., & Schanin, P. M. (1985). The effect of gas on the development of a vacuum arc with a hollow anode. IEEE Transactions on Electrical Insulation, 20, 735–737.CrossRefGoogle Scholar
  28. 28.
    McRae, M. A., & Maddams, W. F. (1976). Infrared spectroscopic studies on polyethylene, 4. The examination of drawn specimens of varying stress crack resistance. Makromolekulare Chemie, 177, 473–484.CrossRefGoogle Scholar
  29. 29.
    Silverstein, M. S., & Breuer, O. (1993). Relationship between surface properties and adhesion for etched ultra-high-molecular-weight polyethylene fibers. Composites Science and Technology, 48, 151–157.CrossRefGoogle Scholar
  30. 30.
    Costa, L., Luda, M. P., Trossarelli, L., Brach Del Prever, E. M., Crova, M., & Gallinaro, P. (1998). Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials, 19, 659–668.CrossRefGoogle Scholar
  31. 31.
    Lee, A. W., Santerre, J. P., & Boynton, E. (2000). Analysis of released products from oxidized ultra-high molecular weight polyethylene incubated with hydrogen peroxide and salt solutions. Biomaterials, 21, 851–861.CrossRefGoogle Scholar
  32. 32.
    Guruvenket, S., Rao, G. M., Komath, M., & Raichur, A. M. (2004). Plasma surface modification of polystyrene and polyethylene. Applied Surface Science, 236, 278–284.CrossRefGoogle Scholar
  33. 33.
    Sanchis, M. R., Blanes, V., Blanes, M., Garcia, D., & Balart, R. (2006). Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. European Polymer Journal, 42, 1558–1568.CrossRefGoogle Scholar
  34. 34.
    Lai, J., Sunderland, B., Xue, J., Yan, S., Zhao, W., Folkard, M., et al. (2006). Study on hydrophilicity of polymer surfaces improved by plasma treatment. Applied Surface Science, 252, 3375–3379.CrossRefGoogle Scholar
  35. 35.
    Chen, J. S., Sun, Z., Guo, P. S., Zhang, Z. B., Zhu, D. Z., & Xu, H. J. (2003). Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene. Journal of Applied Physics, 93, 5103–5108.CrossRefGoogle Scholar
  36. 36.
    Lydon, M. J., Minett, T. W., & Tighe, B. J. (1985). Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6, 396–402.CrossRefGoogle Scholar
  37. 37.
    Švorčık, V., Tomášová, P., Dvorankov, B., Hnatowicz, V., Ochsner, R., & Ryssel, H. (2004). Fibroblasts adhesion on ion beam modified polyethylene. Nuclear Instruments and Methods in Physics Research Section B, 215, 366–372.CrossRefGoogle Scholar
  38. 38.
    Junkar, I., Cvelbar, U., & Lehocky, M. (2011). Plasma treatment of biomedical materials. Materiali in Tehnologije, 45, 221–226.Google Scholar
  39. 39.
    Lensen, M. C., Schulte, V. A., Salber, J., Diez, M., Menges, F., & Möller, M. (2008). Cellular responses to novel, micropatterned biomaterials. Pure and Applied Chemistry, 80, 2479–2487.CrossRefGoogle Scholar
  40. 40.
    Tamada, Y., & Ikada, Y. (1994). Fibroblast growth on polymer surfaces and biosynthesis of collagen. Journal of Biomedical Materials Research, 28, 783–789.CrossRefGoogle Scholar
  41. 41.
    Kottke-Marchant, K., Veenstra, A. A., & Marchant, R. E. (1996). Human endothelial cell growth and coagulant function varies with respect to interfacial properties of polymeric substrates. Journal of Biomedical Materials Research, 30, 209–220.CrossRefGoogle Scholar
  42. 42.
    Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., & Ducheyne, P. (2004). Fibronectin adsorption on surface-activated poly (dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research Part A, 71, 449–461.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  • Irina Yu. Grubova
    • 1
  • Maria A. Surmeneva
    • 1
  • Vladimir V. Shugurov
    • 2
  • Nikolay N. Koval
    • 2
  • Irina I. Selezneva
    • 3
  • Sergei M. Lebedev
    • 1
  • Roman A. Surmenev
    • 1
    • 4
  1. 1.Department of Theoretical and Experimental PhysicsNational Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of High Current Electronics SB RASTomskRussia
  3. 3.Institute of Theoretical and Experimental Biophysics RASPushchinoRussia
  4. 4.Interfacial Engineering and Biotechnology IGBStuttgartGermany

Personalised recommendations