Advertisement

Method for Detecting Ventricular Activity of ECG Using Adaptive Threshold

  • Seung Hwan Lee
  • Young Ro Yoon
Original Article

Abstract

The QRS complex in an electrocardiogram reflects the activity of the cardiac ventricles. Cardiac ventricle activity can provide information about ventricular arrhythmia. This study investigated whether the dominant activity of the ventricles can be used to analyze ventricular arrhythmia characteristics. To assess ventricular activity, we modified the adaptive threshold method proposed by Shin et al. and developed a ventricular activity segmentation approach. The proposed method was tested using five cardiac episodes, namely normal sinus rhythm, supraventricular tachycardia, ventricular tachycardia, ventricular flutter, and ventricular fibrillation, obtained from the MIT-BIH and Creighton University Ventricular Tachyarrhythmia databases. The average sensitivity was 95.77 %, the average positive predictivity was 98.09 %, and the average failed detection rate was 6.08 %.

Keywords

Electrocardiogram (ECG) Ventricular activity segmentation Peak detection Adaptive threshold 

Notes

Acknowledgments

This research was supported by the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (Grant No. 2011H1B8A2003304).

References

  1. 1.
    Kohler, B. U. (2002). The principles of software QRS detection. IEEE Engineering in Medicine and Biology, 21, 42–57.CrossRefGoogle Scholar
  2. 2.
    Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230–236.CrossRefGoogle Scholar
  3. 3.
    Ferdi, Y., Herbeuval, J. P., Charef, A., & Boucheham, B. (2003). R wave detection using fractional digital differentiation. ITBM-RBM, 24, 273–280.CrossRefGoogle Scholar
  4. 4.
    Legarreta, I. R., Addison, P. S., Grubb, N., Clegg, G. R., Robertson, C. E., Fox, K. A. A., & Watson, J. N. (2003). R-wave detection continuous wavelet modulus maxima. Computers in Cardiology, 49, 565–568.Google Scholar
  5. 5.
    Fraden, J., & Neuman, M. R. (1980). QRS wave detection. Medical and Biological Engineering and Computing, 18, 125–132.CrossRefGoogle Scholar
  6. 6.
    Holsinger, W. P., Kempner, K. M., & Miller, M. H. (1971). A QRS preprocessor based on digital differentiation. IEEE Transactions on Biomedical Engineering, 18, 212–217.CrossRefGoogle Scholar
  7. 7.
    Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Transactions on Biomedical Engineering, 33, 1157–1165.CrossRefGoogle Scholar
  8. 8.
    Ma, J., Shi, C., Zhang, Z., Zhu, J., Zhan, P., Fan, Y., Li, D., & Wang, L. (2014). A differentiation-based adaptive double threshold method for real time electrocardiogram R peak. Proceedings of International Conference and Biomedical Engineering Information, 3, 259–263.Google Scholar
  9. 9.
    Chouakri, S. A., Reguig, F. B., & Ahmed, A. T. (2011). QRS complex detection based on multi wavelet packet decomposition. Applied Math and Computation, 217, 9508–9525.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mukhopadhyay, S., Biswas, S., Roy, A. B., & Dey, N. (2012). Wavelet based QRS complex detection of ECG signal. International Journal of Engineering Research and Applications, 2, 2361–2365.Google Scholar
  11. 11.
    Pal, S., & Mitra, M. (2010). Detection of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method. Measurement, 43, 255–261.CrossRefGoogle Scholar
  12. 12.
    Bouaziz, F., Boutana, D., & Benidir, M. (2014). Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Process, 8, 774–782.CrossRefGoogle Scholar
  13. 13.
    Slimane, Z. E. H., & Ali, A. N. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Process, 20, 1221–1228.CrossRefGoogle Scholar
  14. 14.
    Pal, S., & Mitra, M. (2012). Empirical mode decomposition based ECG enhancement and QRS detection. Computers in Biology and Medicine, 42, 83–92.CrossRefGoogle Scholar
  15. 15.
    Zong, W., Moody, G. B., & Jiang, D. (2003). A robust open-source algorithm to detect onset and duration of QRS complexes. Computers in Cardiology, 30, 737–740.Google Scholar
  16. 16.
    Chouhan, V. S., & Mehta, S. S. (2008). Detection of QRS complexes in 12-lead ECG using adaptive quantized threshold. International Journal of Computer Science and Network Solutions, 8, 155–163.Google Scholar
  17. 17.
    Ravanshad, N., Rezaee-Dehsorkh, H., & Lotfi, R. (2014). A level-crossing based QRS-detection algorithm for wearable ECG sensor. IEEE Journal of Biomedical and Health Informatics, 18, 183–192.CrossRefGoogle Scholar
  18. 18.
    Sun, Y., Chan, K. L., & Krishnan, S. M. (2005). Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders, 5, 28–34.CrossRefGoogle Scholar
  19. 19.
    Xue, Q., Hu, Y. H., & Tompkins, W. J. (1992). Neural-network-based adaptive matched filtering for QRS detection. IEEE Transactions on Biomedical Engineering, 39, 317–329.CrossRefGoogle Scholar
  20. 20.
    Mehta, S. S., Shete, D. A., Lingayat, N. S., & Chouhan, V. S. (2010). K-means algorithm for the detection and delineation of QRS-complexes in electrocardiogram. IRBM, 31, 48–54.CrossRefGoogle Scholar
  21. 21.
    Abibullaev, B., & Seo, H. D. (2011). A new QRS detection method using wavelets and artificial neural networks. Journal of Medical Systems, 35, 683–691.CrossRefGoogle Scholar
  22. 22.
    Dubin, D. (2000). Rapid interpretation of EKG’s (6th ed.). Hong Kong: Cover.Google Scholar
  23. 23.
    Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals. Pattern Recognition, 38, 133–142.CrossRefGoogle Scholar
  24. 24.
    Papaloukas, C., Fotiadis, D. I., Likas, A., Liavas, A. P., & Michalis, L. K. (2000). A robust knowledge-based technique for ischemia detection in noisy ECGs. Proceedings of International Journal of International Conference on Knowledge-Based Engineering System and Allied Technology, 2, 768–771.Google Scholar
  25. 25.
    Allstot, E. G., Chen, A. Y., Dixon, A. M. R., Gangopadhyay, D., & Allstot, D. J. (2010). Compressive sampling of ECG bio-signals: Quantization noise and sparsity considerations. IEEE Biomedical Circuits and Systems Conference, 18, 41–44.Google Scholar
  26. 26.
    Shin, H. S., Lee, C., & Lee, M. (2009). Adaptive threshold method for the peak detection of photoplethysmographic waveform. Computers in Biology and Medicine, 39, 1145–1152.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, College of Health ScienceYonsei UniversityWonjuRepublic of Korea

Personalised recommendations