Journal of Medical and Biological Engineering

, Volume 36, Issue 1, pp 71–79 | Cite as

Preliminary Study of Assessing Bladder Urinary Volume Using Electrical Impedance Tomography

  • Rihui Li
  • Jinwu GaoEmail author
  • Yaning Li
  • Junpeng Wu
  • Zhanqi Zhao
  • Yang Liu
Original Article


A non-invasive method based on electrical impedance tomography (EIT) is presented for the continuous assessment of human bladder urinary volume. An EIT system developed for bladder urinary volume imaging is first introduced. To validate the system and to examine the feasibility of estimating bladder fullness with EIT, an ex vivo experiment with four porcine bladders and an observational study of bladder urine filling in six healthy volunteers was conducted. Four porcine bladders were filled with saline solution with various concentrations and separately placed in a cylindrical tank. Each bladder was filled from 0 to 600 ml in increments of 100 ml. EIT measurements were performed and the maximum diameters of the bladders were recorded. For the observational study, bladder filling from empty to the status of strong micturition desire was monitored by EIT. The average conductivity index (ACI) was derived from the EIT images to quantify the bladder filling. For comparison, a four-electrode method, which is described in previous studies, was also applied. The results show a high positive linear correlation between the ACI and the bladder urinary volume in all subjects (correlation coefficient R = 0.98 ± 0.01, p < 0.001), with the performance of the four-electrode method being much poorer (correlation coefficient R = −0.27 ± 0.82, p < 0.001). This study demonstrates that EIT has the ability to distinguish bladder urinary volumes and thus has potential as a practical and effective technique for assessing bladder urinary volume.


Bio-impedance Urinary dysfunction Bladder volume Electrical impedance tomography (EIT) 



This work was financially supported by Guangdong Province’s Key Laboratory of Construction Project-Sensor Technology and Biomedical Instruments, China (2011A060901013) and the National Natural Science Foundation of China (51205423).


  1. 1.
    Birder, L. A., & de Groat, W. C. (2007). Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nature clinical practice Urology, 4, 46–54.CrossRefGoogle Scholar
  2. 2.
    Warren, J. W. (1997). Catheter-associated urinary tract infections. Infectious Disease Clinics of North America, 11, 609–622.CrossRefGoogle Scholar
  3. 3.
    Wyndaele, J. J. (2002). Complications of intermittent catheterization: Their prevention and treatment. Spinal Cord, 40, 536–541.CrossRefGoogle Scholar
  4. 4.
    Holmes, J. H. (1967). Ultrasonic studies of the bladder. Journal of Urology, 97, 654–663.Google Scholar
  5. 5.
    Hwang, J. Y., Byun, S. S., Oh, S. J., & Kim, H. C. (2004). Novel algorithm for improving accuracy of ultrasound measurement of residual urine volume according to bladder shape. Urology, 64, 887–891.CrossRefGoogle Scholar
  6. 6.
    Toozs, H. P., Khullar, V., & Cardozo, L. (2001). Three-dimensional ultrasound: a novel technique for investigating the urethral sphincter in the third trimester of pregnancy. Ultrasound in Obstetrics and Gynecology, 17, 421–424.CrossRefGoogle Scholar
  7. 7.
    Anton, H. A., Chambers, K., Clifton, J., & Tasaka, J. (1998). Clinical utility of a portable ultrasound device in intermittent catheterization. Archives of Physical Medicine and Rehabilitation, 79, 172–175.CrossRefGoogle Scholar
  8. 8.
    Ridder, D. D., Poppel, H. V., Baert, L., & Binard, J. (1997). From time dependent intermittent selfcatheterisation to volume dependent selfcatheterisation in multiple sclerosis using the PCI 5000 Bladdermanager. Spinal Cord, 35, 613–616.CrossRefGoogle Scholar
  9. 9.
    Kristiansen, M. N., Djurhuus, J. C., & Nygaard, H. (2004). Design and evaluation of an ultrasound-based bladder volume monitor. Medical and Biological Engineering and Computing, 42, 762–769.CrossRefGoogle Scholar
  10. 10.
    Pretlow, R. A. (1999). Treatment of nocturnal enuresis with an ultrasound bladder volume controlled alarm device. The Journal of Urology, 162, 1224–1228.CrossRefGoogle Scholar
  11. 11.
    Koldewijn, E. L., Kerrebroeck, P. E. V., Schaafsma, E., Wijkstra, H., Debruyne, F. M., & Brindley, G. S. (1994). Bladder pressure sensors in an animal model. The Journal of Urology, 151, 1379–1384.Google Scholar
  12. 12.
    Takayama, K., Takei, M., Soejima, T., & Kumazawa, J. (1987). Continuous monitoring of bladder pressure in dogs in a completely physiological state. British Journal of Urology, 60, 428–432.CrossRefGoogle Scholar
  13. 13.
    Talibi, M. A., Drolet, R., Kunov, H., & Robson, C. J. (1970). A model for studying the electrical stimulation of the urinary bladder of dogs. British Journal of Urology, 42, 56–65.CrossRefGoogle Scholar
  14. 14.
    Waltz, F. M., Timm, G. W., & Bradley, W. E. (1971). Bladder volume sensing by resistance measurement. IEEE Transactions on BioMedical Engineering, 18, 42–46.CrossRefGoogle Scholar
  15. 15.
    Denniston, J. C., & Baker, L. E. (1975). Measurement of urinary bladder emptying using electrical impedance. Medical and Biological Engineering and Computing, 13, 305–306.CrossRefGoogle Scholar
  16. 16.
    Kim, C. T., Linsenmeyer, T. A., Kim, H., & Yoon, H. (1998). Bladder volume measurement with electrical impedance analysis in spinal cord-injured patients. American Journal of Physical Medicine and Rehabilitation, 77, 498–502.CrossRefGoogle Scholar
  17. 17.
    Liao, W. C., & Jaw, F. S. (2011). Noninvasive electrical impedance analysis to measure human urinary bladder volume. Journal of Obstetrics and Gynaecology Research, 37, 1071–1075.CrossRefGoogle Scholar
  18. 18.
    Shida, K., & Yagami, S. (2006). A non-invasive urination-desire sensing system based on four-electrodes impedance measurement method. Proceedings of the IEEE Annual Conference Industrial Electronics, 1, 2975–2978.Google Scholar
  19. 19.
    Cheney, M., Isaacson, D., & Newell, J. C. (1999). Electrical impedance tomography. SIAM Review, 41, 85–101.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bayford, R., & Tizzard, A. (2012). Bioimpedance imaging: An overview of potential clinical applications. Analyst, 137, 4635–4643.CrossRefGoogle Scholar
  21. 21.
    Leonhardt, S., Cordes, A., Plewa, H., Pikkemaat, R., Soljanik, I., Moehring, K., et al. (2011). Electric impedance tomography for monitoring volume and size of the urinary bladder. Biomedizinische Technik, 56, 301–307.CrossRefGoogle Scholar
  22. 22.
    Schlebusch, T., Nienke, S., Santos, S. A., & Leonhardt, S. (2013). Bladder volume estimation from electrical impedance tomography. Proceedings of the IEEE Annual International Conference Medicine and Biology Society, 1, 6441–6444.Google Scholar
  23. 23.
    He, W., Ran, P., Xu, Z., Li, B., & Li, S. (2012). A 3D visualization method for bladder filling examination based on EIT. Computational and Mathematical Methods in Medicine, 2012, 1–9.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Schmidt, M. W. (2005). IEC 60601-1, 2005: A revolutionary standard, Part 1. Medical Device and Diagnostic Industry, 27, 50–56.Google Scholar
  25. 25.
    Adler, A., & Guardo, R. (1996). Electrical impedance tomography: Regularized imaging and contrast detection. IEEE Transactions on Medical Imaging, 15, 170–179.CrossRefGoogle Scholar
  26. 26.
    Adler, A., & Lionheart, W. R. B. (2006). Uses and abuses of EIDORS: An extensible software base for EIT. Physiological Measurement, 27, S25–S42.CrossRefGoogle Scholar
  27. 27.
    Hahn, G., Beer, M., Frerichs, I., Dudykevych, T., Schröder, T., & Hellige, G. (2000). A simple method to check the dynamic performance of electrical impedance tomography systems. Physiological Measurement, 21, 53–60.CrossRefGoogle Scholar
  28. 28.
    Li, R., Gao, J., Wang, H., & Jiang, Q. (2013). Design of a noninvasive bladder urinary volume monitoring system based on bio-impedance. Engineering, 5, 321–325.CrossRefGoogle Scholar
  29. 29.
    Kushner, R. F. (1992). Bioelectrical impedance analysis: a review of principles and applications. Journal of the American College of Nutrition, 11, 199–209.MathSciNetGoogle Scholar
  30. 30.
    Schlebusch, T., Nienke, S., Leonhäuser, D., Grosse, J., & Leonhardt, S. (2013). Optimal electrode positions to determine bladder volume by bioimpedance spectroscopy. Lecture Notes on Impedance Spectroscopy, 4, 67–73.CrossRefGoogle Scholar
  31. 31.
    Luepschen, H., Meier, T., Grossherr, M., Leibecke, T., Karsten, J., & Leonhardt, S. (2007). Protective ventilation using electrical impedance tomography. Physiological Measurement, 28, S247–S260.CrossRefGoogle Scholar
  32. 32.
    Meier, T., Luepschen, H., Karsten, J., Leibecke, T., Grossherr, M., Gehring, H., & Leonhardt, S. (2008). Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Medicine, 34, 543–550.CrossRefGoogle Scholar
  33. 33.
    Zhao, Z., Steinmann, D., Zivkovic, D. M., Martin, J., Frerichs, I., Guttmann, J., & Moller, K. (2010). A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography. Journal of X-Ray Science Technology, 18, 171–182.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  • Rihui Li
    • 1
  • Jinwu Gao
    • 1
    Email author
  • Yaning Li
    • 1
  • Junpeng Wu
    • 1
  • Zhanqi Zhao
    • 2
  • Yang Liu
    • 1
  1. 1.School of EngineeringSun Yat-Sen UniversityGuangzhouChina
  2. 2.Institute of Technical MedicineFurtwangen UniversityVS-SchwenningenGermany

Personalised recommendations