A discrete geometric approach to heterogeneity and production theory

  • Simona Settepanella
  • Giovanni Dosi
  • Marco Grazzi
  • Luigi Marengo
  • Federico Ponchio


This paper presents the mathematical and computational details which provide the bases of a new methodology for production analysis, void of the standard but empirically dubious assumptions of production theory, but able to assess the level and the evolution of intra-industry heterogeneity and to measure industry and firm-level productivity change. In particular, in this work, we show how geometry can be an effective tool to tackle some relevant issues in economics and how, with new computational methods, it is possible to switch from continuous models to discrete ones, the latter requiring a much smaller set of assumptions.


Discrete geometry Zonotope Heterogeneity Production 

JEL codes

C61 C63 C67 C81 O30 D24 


  1. Baily MN, Hulten C, Campbell D (1992) Productivity dynamics in manufacturing establishments. Brook Pap Econ Act Microecon 4:187–249CrossRefGoogle Scholar
  2. Baldwin E, Klemperer P (2015) Understanding preferences: “demand types”, and the existence of equilibrium with indivisibilities. http://www.nuff.ox.ac.uk/users/klemperer/tropical.pdf. Accessed 18 June 2015
  3. Baldwin JR, Rafiquzzaman M (1995) Selection versus evolutionary adaptation: learning and post-entry performance. Int J Ind Org 13(4):501–522CrossRefGoogle Scholar
  4. Bartelsman EJ, Doms M (2000) Understanding productivity: lessons from longitudinal microdata. J Econ Lit 38(2):569–594CrossRefGoogle Scholar
  5. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444CrossRefGoogle Scholar
  6. Daraio C, Simar L (2007) Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach. J Prod Anal 28(1):13–32CrossRefGoogle Scholar
  7. Dosi G (2007) Statistical regularities in the evolution of industries. a guide through some evidence and challenges for the theory. In: Malerba F, Brusoni S (eds) Perspectives on innovation. Cambridge University Press, CambridgeGoogle Scholar
  8. Dosi G (2004) A very reasonable objective still beyond our reach: Economics as an empirically disciplined social science. In: Augier M, March JG (eds) Models of a man, essays in memory of Herbert A. MIT Press, SimonGoogle Scholar
  9. Dosi G, Grazzi M, Tomasi C, Zeli A (2012) Turbulence underneath the big calm? The micro-evidence behind Italian productivity dynamics. Small Bus Econ 39(4):1043–1067CrossRefGoogle Scholar
  10. Dosi G, Grazzi M, Marengo L, Settepanella S (2013) Production theory: accounting for firm heterogeneity and technical change. LEM working paper no. 22Google Scholar
  11. Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A (Gen) 120(3):253–290CrossRefGoogle Scholar
  12. Hildenbrand W (1981) Short-run production functions based on microdata. Econometrica 49(5):1095–1125CrossRefGoogle Scholar
  13. Koopmans TC (1977) Examples of production relations based on microdata. In: Harcour GC (ed) The Microeconomic foundations of macroeconomics. Macmillan Press, LondonGoogle Scholar
  14. Koshevoy G (1995) Multivariate lorenz majorization. Soc Choice Welf 12:93–102Google Scholar
  15. Koshevoy G (1998) The lorenz zonotope and multivariate majorizations. Soc Choice Welf 15:1–14CrossRefGoogle Scholar
  16. Savaglio E (2002) Multidimensional inequality: a survey. U of Siena, economics working paper no. 362Google Scholar
  17. Schmedders K, Renner PJ (2015) A polynomial optimization approach to principal-agent problems. Econometrica 83(2):729–769CrossRefGoogle Scholar
  18. Shiozawa Y (2015) Trade theory and exotic algebra. Evolut Inst Econ Rev 12Google Scholar
  19. Simar L, Zelenyuk V (2011) Stochastic FDH/DEA estimators for frontier analysis. J Prod Anal 36(1):1–20CrossRefGoogle Scholar
  20. Syverson C (2011) What determines productivity? J Econ Lit 49(2):326–65CrossRefGoogle Scholar
  21. Tran NM (2015) The perron-rank family. Evolut Inst Econ Rev 12Google Scholar
  22. Ziegler GM (1995) Lectures on polytopes. In: Graduate texts in mathematics. Springer, BerlinGoogle Scholar

Copyright information

© Japan Association for Evolutionary Economics 2015

Authors and Affiliations

  • Simona Settepanella
    • 1
  • Giovanni Dosi
    • 2
  • Marco Grazzi
    • 3
  • Luigi Marengo
    • 4
  • Federico Ponchio
    • 5
  1. 1.Department of MathematicsHokkaido UniversitySapporoJapan
  2. 2.Institute of EconomicsScuola Superiore Sant’AnnaPisaItaly
  3. 3.Department of EconomicsUniversity of BolognaBolognaItaly
  4. 4.L.U.I.S.S.RomeItaly
  5. 5.C.N.R.PisaItaly

Personalised recommendations