Skip to main content
Log in

Ultrasonic-assisted plastic flow in a Zr-based metallic glass

锆基金属玻璃超声振动下的塑性流动行为

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Ultrasonic vibration can be used for the micro-molding of metallic glasses (MGs) due to stress-softening and fast surface-diffusion effects. However, the structural rearrangement under ultrasonic vibration and its impact on the mechanical response of metallic glasses remain a puzzle. In this work, the plastic flow of the Zr35Ti30Cu8.25Be26.75 metallic glass with the applied ultrasonic-vibration energy of 140 J was investigated by nanoindentation. Both Kelvin and Maxwell-Voigt models have been adopted to analyze the structural evolution during the creep deformation. The increase of the characteristic relaxation time and the peak intensity of relaxation spectra can be found in the sample after ultrasonic vibration. It effectively improves the activation energy of atomic diffusion during the glass transition (Eg) and the growth of the crystal nucleus (Ep). A more homogenous plastic deformation with a weak loading-rate sensitivity of stress exponent is observed in the ultrasonic-vibrated sample, which coincides with the low pile-up and penetration depth as shown in the cross profile of indents. The structural rearrangement under resonance actuation demonstrated in this work might help us better understand the defect-activation mechanism for the plastic flow of amorphous systems.

摘要

由于应力软化和表面快速扩散效应, 超声振动可以用于金属玻璃微成型. 然而, 超声振动下的结构重排及其对金属玻璃力学响应机制的影响仍不清楚. 本工作采用纳米压痕方法研究了超声振动能量为140 J的Zr35Ti30Cu8.25Be26.75金属玻璃的塑性流动行为. 我们采用Kelvin和Maxwell-Voigt模型分析了蠕变过程中的结构演化. 研究发现, 高频超声振动后样品的特征弛豫时间增长且弛豫峰增强. 它有效地提高了玻璃转变和晶核生长过程中原子扩散的激活能. 我们在超声振动样品中观察到较均匀的塑性变形行为, 还发现超声振动之后加载速率对金属玻璃应力指数的敏感性减弱的现象. 本文有关共振驱动下的结构重排现象的研究有助于更好地理解非晶态系统塑性流动行为的缺陷激活机制.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today, 2017, 20: 323–331

    Article  CAS  Google Scholar 

  2. Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  CAS  Google Scholar 

  3. Yuan CC, Xia XX, Jiang KH, et al. Effect of Sn additions on the damage tolerance of a ZrCuNiAl bulk metallic glass. Metal Mat Trans A, 2013, 44: 819–826

    Article  CAS  Google Scholar 

  4. Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nat Commun, 2018, 9: 3965

    Article  CAS  Google Scholar 

  5. Han G, Peng Z, Xu L, et al. Ultrasonic vibration facilitates the micro-formability of a Zr-based metallic glass. Materials, 2018, 11: 2568

    Article  CAS  Google Scholar 

  6. Li J, Zheng Z, Wu X, et al. A study on micro-forming ability of Zr55 bulk metallic glass under low frequency vibrating field. J Plasticity Eng, 2015, 22: 118–124

    CAS  Google Scholar 

  7. Li N, Xu E, Liu Z, et al. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces. Sci Rep, 2016, 6: 39388

    Article  CAS  Google Scholar 

  8. Huang YM, Wu YS, Huang JY. The influence of ultrasonic vibration-assisted micro-deep drawing process. Int J Adv Manuf Technol, 2014, 71: 1455–1461

    Article  Google Scholar 

  9. Bai Y, Yang M. Investigation on mechanism of metal foil surface finishing with vibration-assisted micro-forging. J Mater Processing Tech, 2013, 213: 330–336

    Article  Google Scholar 

  10. Han G, Li K, Peng Z, et al. A new porous block sonotrode for ultrasonic assisted micro plastic forming. Int J Adv Manuf Technol, 2017, 89: 2193–2202

    Article  Google Scholar 

  11. Michalski M, Lechner M, Gruber M, et al. Influence of ultrasonic vibration on the shear formability of metallic materials. CIRP Ann, 2018, 67: 277–280

    Article  Google Scholar 

  12. Liang X, Ma J, Wu XY, et al. Micro injection of metallic glasses parts under ultrasonic vibration. J Mater Sci Tech, 2017, 33: 703–707

    Article  Google Scholar 

  13. Luo F, Sun F, Li K, et al. Ultrasonic assisted micro-shear punching of amorphous alloy. Mater Res Lett, 2018, 6: 545–551

    Article  CAS  Google Scholar 

  14. Ma J, Yang C, Liu X, et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci Adv, 2019, 5: eaax7256

    Article  CAS  Google Scholar 

  15. Xu Z, Li Z, Zhong S, et al. Wetting mechanism of Sn to Zr50.7-Cu28Ni9Al12.3 bulk metallic glass assisted by ultrasonic treatment. Ultrasons SonoChem, 2018, 48: 207–217

    Article  CAS  Google Scholar 

  16. Fischer-Cripps AC. Nanoindentation. New York: Springer-Verlag, 2002

    Book  Google Scholar 

  17. He LH, Swain MV. Nanoindentation creep behavior of human enamel. J Biomed Mater Res, 2009, 91A: 352–359

    Article  CAS  Google Scholar 

  18. Schuh CA, Nieh TG. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater, 2003, 51: 87–99

    Article  CAS  Google Scholar 

  19. Yuan CC, Lv ZW, Pang CM, et al. Pronounced nanoindentation creep deformation in Cu-doped CoFe-based metallic glasses. J Alloys Compd, 2019, 806: 246–253

    Article  CAS  Google Scholar 

  20. van den Beukel A, Sietsma J. The glass transition as a free volume related kinetic phenomenon. Acta Metall Mater, 1990, 38: 383–389

    Article  CAS  Google Scholar 

  21. Slipenyuk A, Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30-Al10Ni5 metallic glass. Scripta Mater, 2004, 50: 39–44

    Article  CAS  Google Scholar 

  22. Yuan CC, Ma J, Xi XK. Understanding the correlation of plastic zone size with characteristic dimple pattern length scale on the fracture surface of a bulk metallic glass. Mater Sci Eng-A, 2012, 532: 430–434

    Article  CAS  Google Scholar 

  23. Liao GK, Long ZL, Zhao MSZ, et al. Nanoindentation study of the creep behavior in a Fe-based bulk metallic glass. Mater Res Express, 2017, 4: 115202

    Article  CAS  Google Scholar 

  24. Ke HB, Zhang P, Sun BA, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation. J Alloys Compd, 2019, 788: 391–396

    Article  CAS  Google Scholar 

  25. Li WH, Wei BC, Zhang TH, et al. Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics, 2007, 15: 706–710

    Article  CAS  Google Scholar 

  26. Liu L, Chan KC. Plastic deformation of Zr-based bulk metallic glasses under nanoindentation. Mater Lett, 2005, 59: 3090–3094

    Article  CAS  Google Scholar 

  27. Kim JT, Hong SH, Lee CH, et al. Plastic deformation behavior of Fe-Co-B-Si-Nb-Cr bulk metallic glasses under nanoindentation. J Alloys Compd, 2014, 587: 415–419

    Article  CAS  Google Scholar 

  28. Yuan CC, Lv ZW, Pang CM, et al. Atomic-scale heterogeneity in large-plasticity Cu-doped metallic glasses. J Alloys Compd, 2019, 798: 517–522

    Article  CAS  Google Scholar 

  29. Li WB, Henshall JL, Hooper RM, et al. The mechanisms of indentation creep. Acta Metall Mater, 1991, 39: 3099–3110

    Article  CAS  Google Scholar 

  30. Storåkers B, Larsson PL. On Brinell and Boussinesq indentation of creeping solids. J Mech Phys Solids, 1994, 42: 307–332

    Article  Google Scholar 

  31. Xu F, Long Z, Deng X, et al. Loading rate sensitivity of nanoindentation creep behavior in a Fe-based bulk metallic glass. Trans Nonferrous Met Soc China, 2013, 23: 1646–1651

    Article  CAS  Google Scholar 

  32. Huang YJ, Shen J, Chiu YL, et al. Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009, 17: 190–194

    Article  CAS  Google Scholar 

  33. Yoo BG, Oh JH, Kim YJ, et al. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu-Zr bulk metallic glass. Intermetallics, 2010, 18: 1898–1901

    Article  CAS  Google Scholar 

  34. Taub AI, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. J Mater Sci, 1981, 16: 3087–3092

    Article  CAS  Google Scholar 

  35. Castellero A, Moser B, Uhlenhaut DI, et al. Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses. Acta Mater, 2008, 56: 3777–3785

    Article  CAS  Google Scholar 

  36. Yang Y, Zeng JF, Volland A, et al. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Mater, 2012, 60: 5260–5272

    Article  CAS  Google Scholar 

  37. Tsai P, Kranjc K, Flores KM. Hierarchical heterogeneity and an elastic microstructure observed in a metallic glass alloy. Acta Mater, 2017, 139: 11–20

    Article  CAS  Google Scholar 

  38. Sarac B, Ivanov YP, Chuvilin A, et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat Commun, 2018, 9: 1333

    Article  CAS  Google Scholar 

  39. Ferry JD. Viscoelastic Properties of Polymers. 3rd ed. New York: Wiley, 1980

    Google Scholar 

  40. Argon AS. Plastic deformation in metallic glasses. Acta Metall, 1979, 27: 47–58

    Article  CAS  Google Scholar 

  41. Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater, 2010, 9: 619–623

    Article  CAS  Google Scholar 

  42. Ke HB, Zeng JF, Liu CT, et al. Structure heterogeneity in metallic glass: modeling and experiment. J Mater Sci Tech, 2014, 30: 560–565

    Article  Google Scholar 

  43. Li WH, Shin K, Lee CG, et al. The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation. Mater Sci Eng-A, 2008, 478: 371–375

    Article  CAS  Google Scholar 

  44. Gong P, Wang S, Li F, et al. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass. Physica B-Condensed Matter, 2018, 530: 7–14

    Article  CAS  Google Scholar 

  45. Gong P, Jin J, Deng L, et al. Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Mater Sci Eng-A, 2017, 688: 174–179

    Article  CAS  Google Scholar 

  46. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem, 1957, 29: 1702–1706

    Article  CAS  Google Scholar 

  47. Ke HB, Xu HY, Huang HG, et al. Non-isothermal crystallization behavior of U-based amorphous alloy. J Alloys Compd, 2017, 691: 436–441

    Article  CAS  Google Scholar 

  48. Zhao L, Jia H, Xie S, et al. A new method for evaluating structural stability of bulk metallic glasses. J Alloys Compd, 2010, 504: S219–S221

    Article  Google Scholar 

  49. Wang DP, Yang Y, Niu XR, et al. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Phys Rev B, 2017, 95: 235407

    Article  Google Scholar 

  50. Böhmer R, Ngai KL, Angell CA, et al. Nonexponential relaxations in strong and fragile glass formers. J Chem Phys, 1993, 99: 4201–4209

    Article  Google Scholar 

  51. Wang T, Yang YQ, Li JB, et al. Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids. J Alloys Compd, 2011, 509: 4569–4573

    Article  CAS  Google Scholar 

  52. Dyre JC. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev Mod Phys, 2006, 78: 953–972

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51631003, 51871157 and 51601038), the Key Basic and Applied Research Program of Guangdong Province, China (2019B030302010), the Natural Science Foundation of Jiangsu Province, China (BK20171354), the Fundamental Research Funds for the Central Universities (2242020K40002), the Research and Practice Innovation Program for Postgraduates in Jiangsu Province (SJCX20_0388), and Jiangsu Key Laboratory for Advanced Metallic Materials (BM2007204).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yuan C, Lv Z, and Ma J planned the experimental work. Li X and Yang C carried out the sample preparation and ultrasonic-vibration experiments. Lv Z carried out the nanoindentation experiments. Pang C carried out SEM and DSC measurements. Yuan C, Lv Z, Liu R, Pang C, and Ke H analyzed the experimental data. Yuan C wrote the paper with input and advice from Ke H, Wang W, and Shen B.

Corresponding authors

Correspondence to Chenchen Yuan  (袁晨晨), Haibo Ke  (柯海波) or Baolong Shen  (沈宝龙).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Chenchen Yuan received her MSc degree from Northeastern University, Shenyang, China, in 2009, and PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2013. She is currently an associate professor at Southeast University, Nanjing, China. Her research interests focus on the electronic/atomic structure and its relationship with the mechanical properties of metallic glasses.

Haibo Ke received his PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2012. He is currently a research professor in Songshan Lake Materials Laboratory, Dongguan, China. His research interests focus on the glass transition and structure relaxation behavior of metallic glasses.

Baolong Shen received his MSc degree from Shanghai Research Institute of Materials, Shanghai, China, in 1991, and PhD degree from Himeji Institute of Technology, Japan, in 1999. He is currently a professor at Southeast University, Nanjing, China. His research interests focus on the structure and related properties (magnetism, mechanics, etc.) of ferromagnetic bulk amorphous alloys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Lv, Z., Pang, C. et al. Ultrasonic-assisted plastic flow in a Zr-based metallic glass. Sci. China Mater. 64, 448–459 (2021). https://doi.org/10.1007/s40843-020-1411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1411-2

Keywords

Navigation