Skip to main content
Log in

Design and growth of GaN-based blue and green laser diodes

GaN基蓝光与绿光激光器

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

GaN-based laser diodes (LDs) extend the wavelength of semiconductor LDs into the visible and ultraviolet spectrum ranges, and are therefore expected to be widely used in quantum technology, bio & medical instruments, laser displays, lighting and materials processing. The development of blue and green LDs is still challenging, even though they are based on the same III-nitride materials as GaN-based light-emitting diodes. The challenges and progress of GaN-based blue and green LDs are reviewed from the aspects of epitaxial growth and layer structure design. Due to large differences in lattice constants and growth conditions for InN, GaN, and AlN, considerable effort is required to improve the quality of InGaN multiple quantum well (MQW) gain medium for blue and especially green LDs. p-type doping profiles, conditions and layer structures are critical to reduce the internal losses and to mitigate the degradation of InGaN MQWs. Hole injection is also a key issue for GaN-based LDs.

摘要

GaN基激光二极管(LD)将半导体LD的波长扩展到可见光谱 和紫外光谱范围, 因此有望被广泛用于光钟等量子技术、 生物医疗仪器、 激光显示、 照明和材料加工等领域. 尽管它们与GaN基发光二极管(LED)基于相同的III氮化物材料, 但是蓝光和绿光LD面临更大的挑战. 在本文中, 我们从外延生长和结构设计的角度对GaN基蓝光和绿光LD面临的挑战和进展进行了回顾总结. InN、 GaN和AlN之间的晶格常数和生长条件差异很大, 因此需要进行深入研究来提高蓝光, 尤其是绿光LD的InGaN/GaN多量子阱(MQW)增益介质的材料质量. p型掺杂分布, 生长条件和器件结构对减少内部损耗并抑制InGaN MQW的热退化至关重要. 此外, 空穴注入也是GaN基LD面临关键问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281: 956–961

    CAS  Google Scholar 

  2. Ponce FA, Bour DP. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386: 351–359

    CAS  Google Scholar 

  3. Akasaki I, Amano H. Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn J Appl Phys, 1997, 36: 5393–5408

    CAS  Google Scholar 

  4. DenBaars SP, Feezell D, Kelchner K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater, 2013, 61: 945–951

    CAS  Google Scholar 

  5. Wierer Jr JJ, Tsao JY, Sizov DS. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev, 2013, 7: 963–993

    CAS  Google Scholar 

  6. Queren D, Avramescu A, Brüderl G, et al. 500 nm electrically driven InGaN based laser diodes. Appl Phys Lett, 2009, 94: 081119

    Google Scholar 

  7. Schwarz UT, Scheibenzuber WG. The green laser diode: completing the rainbow. Optics Photonics News, 2011, 22: 38–44

    CAS  Google Scholar 

  8. Jansen M, Cantos BD, Carey GP, et al. Visible laser and laser array sources for projection display. Proc SPIE, 2006, 6135: 61350T

    Google Scholar 

  9. Lutgen S, Avramescu A, Lermer T, et al. Progress of blue and green InGaN laser diodes. Proc SPIE, 2010, 7616: 76160G

    Google Scholar 

  10. Sizov D, Bhat R, Zah CE. Gallium indium nitride-based green lasers. J Lightwave Technol, 2012, 30: 679–699

    CAS  Google Scholar 

  11. Lingrong J, Jianping L, Aiqin T, et al. GaN-based green laser diodes. J Semicond, 2016, 37: 111001

    Google Scholar 

  12. Ambacher O. Growth and applications of group III-nitrides. J Phys D-Appl Phys, 1998, 31: 2653–2710

    CAS  Google Scholar 

  13. Kozaki T, Matsumura H, Sugimoto Y, et al. High-power and wide wavelength range GaN-based laser diodes. Proc SPIE, 2006, 6133: 613306

    Google Scholar 

  14. Amano H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials. Prog Cryst Growth Charact Mater, 2016, 62: 126–135

    CAS  Google Scholar 

  15. Nakamura S, Senoh M, Nagahama S, et al. Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl Phys Lett, 2000, 76: 22–24

    CAS  Google Scholar 

  16. Nagahama S, Yanamoto T, Sano M, et al. Wavelength dependence of InGaN laser diode characteristics. Jpn J Appl Phys, 2001, 40: 3075–3081

    CAS  Google Scholar 

  17. Kozaki T, Yanamoto T, Miyoshi T, et al. 52.3: High-power InGaN blue-laser diodes for displays. SID Symposium Digest, 2005, 36: 1605–1607

    CAS  Google Scholar 

  18. Miyoshi T, Kozaki T, Yanamoto T, et al. GaN-based high-output-power blue laser diodes for display applications. J Soc Inf Display, 2007, 15: 157

    CAS  Google Scholar 

  19. Miyoshi T, Kozaki T, Yanamoto T, et al. 63.3: GaN-based 1-W continuous-wave blue-laser diodes. SID Symposium Digest, 2008, 39: 966

    CAS  Google Scholar 

  20. Nakatsu Y, Nagao Y, Kozuru K, et al. High-efficiency blue and green laser diodes for laser displays. Proc SPIE, 2019, 10918: 10918D

    Google Scholar 

  21. Liu J, Zhang L, Li D, et al. GaN-based blue laser diodes with 2.2 W of light output power under continuous-wave operation. IEEE Photon Technol Lett, 2017, 29: 2203–2206

    CAS  Google Scholar 

  22. Hu L, Zhang LQ, Liu JP, et al. High power GaN-based blue laser diodes. Chin J Lasers, 2020, 47: 0701004

    Google Scholar 

  23. Avramescu A, Lermer T, Müller J, et al. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl Phys Express, 2010, 3: 061003

    Google Scholar 

  24. Miyoshi T, Masui S, Okada T, et al. 510–515 nm InGaN-based green laser diodes on c-plane GaN substrate. Appl Phys Express, 2009, 2: 062201

    Google Scholar 

  25. Miyoshi T, Masui S, Okada T, et al. InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Phys Status Solidi A, 2010, 207: 1389–1392

    CAS  Google Scholar 

  26. Tian A, Liu J, Zhang L, et al. Optical characterization of InGaN/GaN quantum well active region of green laser diodes. Appl Phys Express, 2017, 10: 012701

    Google Scholar 

  27. Tian A, Liu J, Zhang L, et al. Significant increase of quantum efficiency of green InGaN quantum well by realizing step-flow growth. Appl Phys Lett, 2017, 111: 112102

    Google Scholar 

  28. Tian A, Liu J, Zhang L, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN:Mg cladding layer. Phys Status Solidi C, 2016, 13: 245–247

    CAS  Google Scholar 

  29. Hu L, Ren X, Liu J, et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photon Res, 2020, 8: 279

    Google Scholar 

  30. Sizov D, Bhat R, Heberle A, et al. True-green (11–22) plane optically pumped laser with cleaved m-plane facets. Appl Phys Lett, 2011, 99: 041117

    Google Scholar 

  31. Huang CY, Hardy MT, Fujito K, et al. Demonstration of 505 nm laser diodes using wavelength-stable semipolar 2021 InGaN/GaN quantum wells. Appl Phys Lett, 2011, 99: 241115

    Google Scholar 

  32. Enya Y, Yoshizumi Y, Kyono T, et al. 531 nm green lasing of InGaN based laser diodes on semi-polar 2021 free-standing GaN substrates. Appl Phys Express, 2009, 2: 082101

    Google Scholar 

  33. Takagi S, Enya Y, Kyono T, et al. High-power (over 100 mW) green laser diodes on semipolar 20221 GaN substrates operating at wavelengths beyond 530 nm. Appl Phys Express, 2012, 5: 082102

    Google Scholar 

  34. Yanashima K, Nakajima H, Tasai K, et al. Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar 20221 GaN substrates. Appl Phys Express, 2012, 5: 082103

    Google Scholar 

  35. Khan A. Laser diodes go green. Nat Photon, 2009, 3: 432–434

    CAS  Google Scholar 

  36. Chen G, Craven M, Kim A, et al. Performance of high-power IIInitride light emitting diodes. Phys Status Solidi A, 2008, 205: 1086–1092

    CAS  Google Scholar 

  37. Morkoc H. Handbook of Nitride Semiconductors and Devices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008

    Google Scholar 

  38. Morishita Y, Nomura Y, Goto S, et al. Effect of hydrogen on the surface-diffusion length of Ga adatoms during molecular-beam epitaxy. Appl Phys Lett, 1995, 67: 2500–2502

    CAS  Google Scholar 

  39. Lermer T, Gomez-Iglesias A, Sabathil M, et al. Gain of blue and cyan InGaN laser diodes. Appl Phys Lett, 2011, 98: 021115

    Google Scholar 

  40. Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films. J Cryst Growth, 2009, 311: 2933–2936

    CAS  Google Scholar 

  41. Strauß U, Avramescu A, Lermer T, et al. Pros and cons of green InGaN laser on c-plane GaN. Phys Status Solidi B, 2011, 248: 652–657

    Google Scholar 

  42. Queren D, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift. Phys Status Solidi C, 2009, 6: S826–S829

    Google Scholar 

  43. Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth. Appl Phys Lett, 2013, 103: 152109

    Google Scholar 

  44. Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region. Appl Phys Express, 2014, 7: 111001

    Google Scholar 

  45. Yang J, Zhao DG, Jiang DS, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24: 13824

    CAS  Google Scholar 

  46. Follstaedt DM, Lee SR, Allerman AA, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations. J Appl Phys, 2009, 105: 083507

    Google Scholar 

  47. Li J, Oder TN, Nakarmi ML, et al. Optical and electrical properties of Mg-doped p-type ALGa1-eN. Appl Phys Lett, 2002, 80: 1210–1212

    CAS  Google Scholar 

  48. Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8: 051001

    Google Scholar 

  49. Kuramoto M, Sasaoka C, Futagawa N, et al. Reduction of internal loss and threshold current in a laser diode with a ridge by selective re-growth (RiS-LD). Phys Status Solidi A, 2002, 192: 329–334

    CAS  Google Scholar 

  50. Schmidt O, Wolst O, Kneissl M, et al. Gain and photoluminescence spectroscopy in violet and ultraviolet InAlGaN laser structures. Phys Status Solidi C, 2005, 2: 2891–2894

    CAS  Google Scholar 

  51. Kioupakis E, Rinke P, Schleife A, et al. Free-carrier absorption in nitrides from first principles. Phys Rev B, 2010, 81: 241201

    Google Scholar 

  52. Kioupakis E, Rinke P, Van de Walle CG. Determination of internal loss in nitride lasers from first principles. Appl Phys Express, 2010, 3: 082101

    Google Scholar 

  53. David A, Grundmann MJ, Kaeding JF, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2008, 92: 053502

    Google Scholar 

  54. Meyaard DS, Lin GB, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl Phys Lett, 2011, 99: 251115

    Google Scholar 

  55. Wang CH, Chang SP, Ku PH, et al. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl Phys Lett, 2011, 99: 171106

    Google Scholar 

  56. Yeo YC, Chong TC, Li MF. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J Appl Phys, 1998, 83: 1429–1436

    CAS  Google Scholar 

  57. Ikeda M, Zhang F, Zhou R, et al. Thermionic emission of carriers in InGaN/(In)GaN multiple quantum wells. Jpn J Appl Phys, 2019, 58: SCCB03

    CAS  Google Scholar 

  58. Liu JP, Ryou JH, Dupuis RD, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes. Appl Phys Lett, 2008, 93: 021102

    Google Scholar 

  59. Zhou K, Ikeda M, Liu J, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes. Appl Phys Lett, 2014, 105: 173510

    Google Scholar 

  60. Cho YH, Gainer GH, Fischer AJ, et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 73: 1370–1372

    CAS  Google Scholar 

  61. Bai J, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J Appl Phys, 2000, 88: 4729–4733

    CAS  Google Scholar 

  62. Seo Im J, Kollmer H, Off J, et al. Reduction of oscillator strength due to piezoelectric fields in GaNAL.Ga1−xN quantum wells. Phys Rev B, 1998, 57: R9435–R9438

    CAS  Google Scholar 

  63. Peng LH, Chuang CW, Lou LH. Piezoelectric effects in the optical properties of strained InGaN quantum wells. Appl Phys Lett, 1999, 74: 795–797

    CAS  Google Scholar 

  64. Chang SJ, Lai WC, Su YK, et al. InGaN-GaN multi-quantum-well blue and green light-emitting diodes. IEEE J Sel Top Quantum Electron, 2002, 8: 278–283

    CAS  Google Scholar 

  65. Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl Phys Lett, 2001, 78: 2617–2619

    CAS  Google Scholar 

  66. Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B, 1997, 56: R10024–R10027

    CAS  Google Scholar 

  67. Bernardini F, Fiorentini V. Polarization fields in nitride nanostructures: 10 points to think about. Appl Surf Sci, 2000, 166: 23–29

    CAS  Google Scholar 

  68. Zhang M, Moore J, Mi Z, et al. Polarization effects in self-organized InGaN/GaN quantum dots grown by RF-plasma-assisted molecular beam epitaxy. J Cryst Growth, 2009, 311: 2069–2072

    CAS  Google Scholar 

  69. Della Sala F, Di Carlo A, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett, 1999, 74: 2002–2004

    CAS  Google Scholar 

  70. Huang CY, Lin YD, Tyagi A, et al. Optical waveguide simulations for the optimization of InGaN-based green laser diodes. J Appl Phys, 2010, 107: 023101

    Google Scholar 

  71. Adachi M, Yoshizumi Y, Enya Y, et al. Low threshold current density InGaN based 520–530 nm green laser diodes on semipolar 20221 free-standing GaN substrates. Appl Phys Express, 2010, 3: 121001

    Google Scholar 

  72. Hardy MT, Wu F, Shan Hsu P, et al. True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy. J Appl Phys, 2013, 114: 183101

    Google Scholar 

  73. Lin YD, Yamamoto S, Huang CY, et al. High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl Phys Express, 2010, 3: 082001

    Google Scholar 

  74. Wu F, Lin YD, Chakraborty A, et al. Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl Phys Lett, 2010, 96: 231912

    Google Scholar 

  75. Feng MX, Liu JP, Zhang SM, et al. Design considerations for GaN-based blue laser diodes with InGaN upper waveguide layer. IEEE J Sel Top Quantum Electron, 2013, 19: 1500705

    Google Scholar 

  76. Hager T, Brüderl G, Lermer T, et al. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes. Appl Phys Lett, 2012, 101: 171109

    Google Scholar 

  77. Nakamura S. InGaN-based blue laser diodes. IEEE J Sel Top Quantum Electron, 1997, 3: 712–718

    CAS  Google Scholar 

  78. Farrell RM, Haeger DA, Hsu PS, et al. Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes. Appl Phys Lett, 2011, 99: 171115

    Google Scholar 

  79. Becerra DL, Kuritzky LY, Nedy J, et al. Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar 2021 III-nitride laser diodes with chemically assisted ion beam etched facets. Appl Phys Lett, 2016, 108: 091106

    Google Scholar 

  80. Ryu HY, Ha KH, Son JK, et al. Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics. Appl Phys Lett, 2008, 93: 011105

    Google Scholar 

  81. Kawaguchi M, Imafuji O, Nozaki S, et al. Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure. Proc SPIE, 2016, 9748: 974818

    Google Scholar 

  82. Duff AI, Lymperakis L, Neugebauer J. Understanding and controlling indium incorporation and surface segregation on InxGa1−xN surfaces: An ab initio approach. Phys Rev B, 2014, 89: 085307

    Google Scholar 

  83. Stringfellow GB. Microstructures produced during the epitaxial growth of InGaN alloys. J Cryst Growth, 2010, 312: 735–749

    CAS  Google Scholar 

  84. Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Opt Express, 2017, 25: 415

    CAS  Google Scholar 

  85. Oliver RA, Kappers MJ, Humphreys CJ, et al. Growth modes in heteroepitaxy of InGaN on GaN. J Appl Phys, 2005, 97: 013707

    Google Scholar 

  86. Oliver RA, Kappers MJ, Humphreys CJ, et al. The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy. J Cryst Growth, 2004, 272: 393–399

    CAS  Google Scholar 

  87. Florescu DI, Ting SM, Merai VN, et al. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets. Phys Status Solidi C, 2006, 3: 1811–1814

    CAS  Google Scholar 

  88. Falta J, Schmidt T, Gangopadhyay S, et al. Cleaning and growth morphology of GaN and InGaN surfaces. Phys Status Solidi B, 2011, 248: 1800–1809

    CAS  Google Scholar 

  89. Kadir A, Meissner C, Schwaner T, et al. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy. J Cryst Growth, 2011, 334: 40–45

    CAS  Google Scholar 

  90. Pristovsek M, Kadir A, Meissner C, et al. Growth mode transition and relaxation of thin InGaN layers on GaN (0001). J Cryst Growth, 2013, 372: 65–72

    CAS  Google Scholar 

  91. Massabuau FCP, Davies MJ, Oehler F, et al. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem. Appl Phys Lett, 2014, 105: 112110

    Google Scholar 

  92. Massabuau FCP, Sahonta SL, Trinh-Xuan L, et al. Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures. Appl Phys Lett, 2012, 101: 212107

    Google Scholar 

  93. Massabuau FCP, Trinh-Xuan L, Lodié D, et al. Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells. J Appl Phys, 2013, 113: 073505

    Google Scholar 

  94. Tian A, Liu J, Zhou R, et al. Green laser diodes with constant temperature growth of InGaN/GaN multiple quantum well active region. Appl Phys Express, 2019, 12: 064007

    CAS  Google Scholar 

  95. Jiang F, Zhang J, Xu L, et al. Efficient InGaN-based yellow-light-emitting diodes. Photon Res, 2019, 7: 144

    Google Scholar 

  96. Funato M, Kim YS, Hira T, et al. Remarkably suppressed luminescence inhomogeneity in a (0001) InGaN green laser structure. Appl Phys Express, 2013, 6: 111002

    Google Scholar 

  97. Saito S, Hashimoto R, Hwang J, et al. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl Phys Express, 2013, 6: 111004

    Google Scholar 

  98. Yamamoto S, Zhao Y, Pan CC, et al. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar 20211 GaN substrates. Appl Phys Express, 2010, 3: 122102

    Google Scholar 

  99. Chung RB, Lin YD, Koslow I, et al. Electroluminescence characterization of 20211 InGaN/GaN light emitting diodes with various wavelengths. Jpn J Appl Phys, 2010, 49: 070203

    Google Scholar 

  100. Yang J, Zhao DG, Jiang DS, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115: 163704

    Google Scholar 

  101. Koleske DD, Wickenden AE, Henry RL, et al. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J Cryst Growth, 2002, 242: 55–69

    CAS  Google Scholar 

  102. Parish G, Keller S, Denbaars SP, et al. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN. J Elec Materi, 2000, 29: 15–20

    CAS  Google Scholar 

  103. Chen JT, Forsberg U, Janzén E. Impact of residual carbon on two-dimensional electron gas properties in AlxGa1−xN/GaN heterostructure. Appl Phys Lett, 2013, 102: 193506

    Google Scholar 

  104. Jiang L, Liu J, Tian A, et al. Influence of substrate misorientation on carbon impurity incorporation and electrical properties of p-GaN grown by metalorganic chemical vapor deposition. Appl Phys Express, 2019, 12: 055503

    CAS  Google Scholar 

  105. Monavarian M, Rashidi A, Feezell D. A decade of nonpolar and semipolar III-nitrides: A review of successes and challenges. Phys Status Solidi A, 2018, 216: 1800628

    Google Scholar 

  106. Weng GE, Zhao WR, Chen SQ, et al. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res Lett, 2015, 10: 31

    Google Scholar 

  107. Li ZC, Liu JP, Feng MX, et al. Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. J Appl Phys, 2013, 114: 093105

    Google Scholar 

  108. Mei Y, Weng GE, Zhang BP, et al. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci Appl, 2017, 6: e16199

    CAS  Google Scholar 

  109. Qi W, Zhang J, Mo C, et al. Effects of thickness ratio of InGaN to GaN in superlattice strain relief layer on the optoelectrical properties of InGaN-based green LEDs grown on Si substrates. J Appl Phys, 2017, 122: 084504

    Google Scholar 

  110. Shioda T, Yoshida H, Tachibana K, et al. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys Status Solidi A, 2012, 209: 473–476

    CAS  Google Scholar 

  111. Alhassan AI, Farrell RM, Saifaddin B, et al. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Opt Express, 2016, 24: 17868

    CAS  Google Scholar 

  112. Zhao Y, Fu H, Wang GT, et al. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv Opt Photon, 2018, 10: 246

    CAS  Google Scholar 

  113. Kuc M, Piskorski L, Sokół AK, et al. Optical simulations of blue and green semipolar InGaN/GaN lasers. Proc SPIE, 2018, 10532: 1053228

    Google Scholar 

  114. Boycheva S, Sytchkova AK, Piegari A. Optical and electrical characterization of r.f. sputtered ITO films developed as art protection coatings. Thin Solid Films, 2007, 515: 8474–8478

    CAS  Google Scholar 

  115. Wen AJC, Chen KL, Yang MH, et al. Effect of substrate angle on properties of ITO films deposited by cathodic arc ion plating with In-Sn alloy target. Surf Coatings Tech, 2005, 198: 362–366

    CAS  Google Scholar 

  116. Hardy MT, Holder CO, Feezell DF, et al. Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl Phys Lett, 2013, 103: 081103

    Google Scholar 

  117. Margalith T, Buchinsky O, Cohen DA, et al. Indium tin oxide contacts to gallium nitride optoelectronic devices. Appl Phys Lett, 1999, 74: 3930–3932

    CAS  Google Scholar 

  118. Liu H, Avrutin V, Izyumskaya N, et al. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices MicroStruct, 2010, 48: 458–484

    CAS  Google Scholar 

  119. Myzaferi A, Reading AH, Cohen DA, et al. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes. Appl Phys Lett, 2016, 109: 061109

    Google Scholar 

  120. Mehari S, Cohen DA, Becerra DL, et al. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 2021 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers. Opt Express, 2018, 26: 1564

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFB0401803, 2017YFE0131500 and 2017YFB0405000), National Natural Science Foundation of China (61834008, 61574160, 61804164, and 61704184), Natural Science Foundation of Jiangsu province (BK20180254), China Postdoctoral Science Foundation (2018M630619). We are thankful to the technical support from Nano Fabrication Facility, Platform for Characterization & Test, and Nano-X of SINANO, CAS.

Author information

Authors and Affiliations

Authors

Contributions

Liu J proposed the topic and the outline of the manuscript, and wrote the introduction and the challenges section. Tian A and Hu L wrote the other sections under the direction of Liu J. All authors contributed to the discussion of the manuscript.

Corresponding author

Correspondence to Jianping Liu  (刘建平).

Additional information

Conflict of interest

The authors declare that they have no conflicts of interest.

Aiqin Tian is a postdoctoral researcher in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS). She earned her doctoral degree from the University of Chinese Academy of Sciences in 2017. Her research focuses on MOCVD growth of III-nitride materials and devices.

Lei Hu is a PhD candidate at the School of Nano-Tech and Nano-Bionics, University of Science and Technology of China. He received his Bachelor degree (2016) from Soochow University. His research focuses on the fabrication and characterizations of GaN-based blue and green laser diodes.

Jianping Liu is a professor at Suzhou Institute of Nano-Tech and Nano-Bionics, CAS. He earned his doctoral degree from the Institute of Semiconductors, CAS in 2004. He worked at the Lab of Optoelectronics Technology at Beijing University of Technology from 2004 to 2006. He did postdoctoral research in the Department of Electrical Engineering at Georgia Institute of Technology from 2006 to 2010. His research interests include MOCVD growth, GaN-based materials and devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, A., Hu, L., Zhang, L. et al. Design and growth of GaN-based blue and green laser diodes. Sci. China Mater. 63, 1348–1363 (2020). https://doi.org/10.1007/s40843-020-1275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1275-4

Keywords

Navigation