Advertisement

Science China Materials

, Volume 62, Issue 12, pp 1831–1836 | Cite as

Polysaccharides-based nanohybrids: Promising candidates for biomedical materials

  • Zhiwen Liu (柳智文)
  • Kangli Guo (郭康丽)
  • Nana Zhao (赵娜娜)Email author
  • Fu-Jian Xu (徐福建)Email author
Perspective

多糖基复合纳米材料: 有希望的候选生物医用材料

摘要

由多糖和多功能无机纳米颗粒组成的多糖基复合纳米材料在生物医学领域具有潜在的应用价值, 是一种有希望的候选材料. 本文介绍了多糖基复合纳米材料的优良性能及其在成像和治疗中的应用. 除了多糖和无机纳米颗粒这两部分的功能简单结合以外, 复合纳米材料还具有协同性能和功能. 最后, 我们讨论了多糖基复合纳米材料在潜在的临床应用中的挑战和前景.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0201501 and 2017YFA0106100), the National Natural Science Foundation of China (51773013 and 51733001), and the Fundamental Research Funds for the Central Universities (BHYC1705A and XK1802-2).

Conflict of interest The authors declare that they have no conflict of interest.

References

  1. 1.
    Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev, 2012, 41: 2623–2640CrossRefGoogle Scholar
  2. 2.
    Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliver Rev, 2008, 60: 1650–1662CrossRefGoogle Scholar
  3. 3.
    Hu Y, Li Y, Xu FJ. Versatile functionalization of polysaccharides via polymer grafts: from design to biomedical applications. Acc Chem Res, 2017, 50: 281–292CrossRefGoogle Scholar
  4. 4.
    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliver Rev, 2010, 62: 3–11CrossRefGoogle Scholar
  5. 5.
    Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26: 5983–5990CrossRefGoogle Scholar
  6. 6.
    Song L, Zhou X, Dai X, et al. Self-destructible polysaccharide nanocomposites with unlockable Au nanorods for high-performance photothermal therapy. NPG Asia Mater, 2018, 10: 509–521CrossRefGoogle Scholar
  7. 7.
    Ran W, Xue X. Theranostical application of nanomedicine for treating central nervous system disorders. Sci China Life Sci, 2018, 61: 392–399CrossRefGoogle Scholar
  8. 8.
    Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev, 2019, 119: 1666–1762CrossRefGoogle Scholar
  9. 9.
    Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev, 2016, 116: 5464–5519CrossRefGoogle Scholar
  10. 10.
    Zhang H, Liu XL, Zhang YF, et al. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci, 2018, 61: 400–414CrossRefGoogle Scholar
  11. 11.
    Cao Z, Wang D, Li Y, et al. Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Sci China Life Sci, 2018, 61: 448–456CrossRefGoogle Scholar
  12. 12.
    Fan F, Sun J, Chen B, et al. Rotating magnetic field-controlled fabrication of magnetic hydrogel with spatially disk-like microstructures. Sci China Mater, 2018, 61: 1112–1122CrossRefGoogle Scholar
  13. 13.
    Naha PC, Liu Y, Hwang G, et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano, 2019, 13: 4960–4971CrossRefGoogle Scholar
  14. 14.
    Zhang X, Yuan Q, Gao X. Assessment of the MT1-MMP expression level of different cell lines by the naked eye. Sci China Life Sci, 2018, 61: 492–500CrossRefGoogle Scholar
  15. 15.
    Liu Y, Li M, Yang F, et al. Magnetic drug delivery systems. Sci China Mater, 2017, 60: 471–486CrossRefGoogle Scholar
  16. 16.
    Zhao Q, Liu J, Zhu W, et al. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells. Acta Biomater, 2015, 23: 147–156CrossRefGoogle Scholar
  17. 17.
    Jang H, Ryoo SR, Kostarelos K, et al. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 2013, 34: 3503–3510CrossRefGoogle Scholar
  18. 18.
    Chen R, Wang X, Yao X, et al. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials, 2013, 34: 8314–8322CrossRefGoogle Scholar
  19. 19.
    Wang H, Mukherjee S, Yi J, et al. Biocompatible chitosan-carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal-chemo therapy. ACS Appl Mater Interfaces, 2017, 9: 18639–18649CrossRefGoogle Scholar
  20. 20.
    Lin Y, Yao W, Cheng Y, et al. Multifold enhanced T 2 relaxation of ZnFe2O4 nanoparticles by jamming them inside chitosan nanospheres. J Mater Chem, 2012, 22: 5684–5693CrossRefGoogle Scholar
  21. 21.
    Cai Z, Zhang H, Wei Y, et al. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules, 2017, 18: 1677–1696CrossRefGoogle Scholar
  22. 22.
    Fan W, Qi Y, Wang R, et al. Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. Sci China Life Sci, 2018, 61: 483–491CrossRefGoogle Scholar
  23. 23.
    Li N, Chen Y, Zhang YM, et al. Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for the targeted delivery of anticancer drugs. Sci Rep, 2015, 4: 4164CrossRefGoogle Scholar
  24. 24.
    Wang H, He J, Ding Y, et al. Preparation and characterization of sulfonated chitosan-modified gold nanoparticles and their surface electronic payload of charged drugs. Sci China Life Sci, 2018, 61: 457–463CrossRefGoogle Scholar
  25. 25.
    Yin T, Liu J, Zhao Z, et al. Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery. Adv Funct Mater, 2017, 27: 1604620CrossRefGoogle Scholar
  26. 26.
    Kinnear C, Moore TL, Rodriguez-Lorenzo L, et al. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev, 2017, 117: 11476–11521CrossRefGoogle Scholar
  27. 27.
    Chen X, Zhang Q, Li J, et al. Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano, 2018, 12: 5646–5656CrossRefGoogle Scholar
  28. 28.
    Chen R, Zheng X, Qian H, et al. Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomater Sci, 2013, 1: 285–293CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhiwen Liu (柳智文)
    • 1
    • 2
  • Kangli Guo (郭康丽)
    • 1
    • 2
  • Nana Zhao (赵娜娜)
    • 1
    • 2
    Email author
  • Fu-Jian Xu (徐福建)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations