Science China Materials

, Volume 62, Issue 12, pp 1888–1897 | Cite as

Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance

  • Xiaoyuan Zhang (张晓媛)
  • Wenfeng Wei (魏文锋)
  • Shan Zhang (张山)
  • Bianying Wen (温变英)Email author
  • Zhiqiang Su (苏志强)Email author


Herein, a unique nanohybrid foam was fabricated with titanium dioxide (TiO2)-carbon quantum dots (CQDs) nanoparticles intercalated between graphene oxide (GO) layers via a facile and low-cost solvothermal method. Compared with pure GO foam, the fabricated GO-TiO2-CQDs foam displayed high degradation rate towards methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), respectively, under the Xenon lamp irradiation. The composite foam can be used for several times and remain a high degradation rate without structural damage. The photochemical property was attributed to the 3D porous structure of GO-TiO2-CQDs foam, in which ultrafine hydrogenated TiO2-CQDs nanoparticles were densely anchored on the GO sheets. This paper provides an efficient strategy to tune the charge transport and thus enhance the photocatalytic performance by combining the semi-conductive GO and quantum dots.


graphene titanium dioxide carbon quantum dots nanohybrid foam photocatalytic degradation 



本文通过高效低成本的水热法将TiO2@CQDs插入还原氧化石墨烯片层间, 制备了一种独特的纳米杂化三维rGO-TiO2-CQDs泡沫. 在氙灯照射下, 所合成的三维rGO-TiO2-CQDs泡沫对甲基橙(MO)、 亚甲蓝(MB)以及罗丹明B(RhB)表现出很高的降解速率, 在多次使用后仍然保持高效且形貌不变. 这种优异的光催化性能归因于rGO-TiO2-CQDs泡沫的多孔结构, 以及密集吸附在石墨烯表面上的催化剂TiO2@CQDs. 本文中所描述的三维杂化泡沫将光催化剂TiO2与半导体石墨烯和碳量子点结合, 有望为进一步提高电荷分离效率, 进而提高光催化效果, 开辟一条新途径.



This work was supported by the National Natural Science Foundation of China (NSFC, 51573013 and 51873016) and the Open Project Program of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (QETHSP2019006).

Conflict of interest The authors declare no conflict of interest.


  1. 1.
    Liu W, Liu Z, Wang G, et al. Carbon coated Au/TiO2 mesoporous microspheres: A novel selective photocatalyst. Sci China Mater, 2017, 60: 438–448CrossRefGoogle Scholar
  2. 2.
    Yang X, Tian L, Zhao X, et al. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl Catal B-Environ, 2019, 244: 240–249CrossRefGoogle Scholar
  3. 3.
    Pacholski C, Kornowski A, Weller H. Site-specific photodeposition of silver on ZnO nanorods. Angew Chem Int Ed, 2004, 43: 4774–4777CrossRefGoogle Scholar
  4. 4.
    Ding J, Zhu S, Zhu T, et al. Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv, 2015, 5: 22935–22942CrossRefGoogle Scholar
  5. 5.
    Sun K, Wang L, Wu C, et al. Fabrication of α-Fe2O3@rGO/PAN nanofiber composite membrane for photocatalytic degradation of organic dyes. Adv Mater Interfaces, 2017, 4: 1700845CrossRefGoogle Scholar
  6. 6.
    Tian J, Zhao Z, Kumar A, et al. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem Soc Rev, 2014, 43: 6920–6937CrossRefGoogle Scholar
  7. 7.
    Almeida BM, Melo Jr. MA, Bettini J, et al. A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity. Appl Surf Sci, 2015, 324: 419–431CrossRefGoogle Scholar
  8. 8.
    Ding J, Sun W, Wei G, et al. Cuprous oxide microspheres on graphene nanosheets: An enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. RSC Adv, 2015, 5: 35338–35345CrossRefGoogle Scholar
  9. 9.
    Zhao X, Li Y, Guo Y, et al. Coral-like MoS2/Cu2O porous nanohybrid with dual-electrocatalyst performances. Adv Mater Interfaces, 2016, 3: 1600658CrossRefGoogle Scholar
  10. 10.
    Gao C, Li X, Lu B, et al. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale, 2012, 4: 3475–3481CrossRefGoogle Scholar
  11. 11.
    Cui S, Wen Z, Huang X, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small, 2015, 11: 2305–2313CrossRefGoogle Scholar
  12. 12.
    Yu X, Lin D, Li P, et al. Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids. Sol Energy Mater Sol Cells, 2017, 172: 252–269CrossRefGoogle Scholar
  13. 13.
    Dong X, Cao Y, Wang J, et al. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv, 2012, 2: 4364–4369CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Tang ZR, Fu X, et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube? ACS Nano, 2011, 5: 7426–7435CrossRefGoogle Scholar
  15. 15.
    Zhang L, Hu X, Wang C, et al. Water-dispersible and recyclable magnetic TiO2/graphene nanocomposites in wastewater treatment. Mater Lett, 2018, 231: 80–83CrossRefGoogle Scholar
  16. 16.
    Shirai K, Fazio G, Sugimoto T, et al. Water-assisted hole trapping at the highly curved surface of nano-TiO2 photocatalyst. J Am Chem Soc, 2018, 140: 1415–1422CrossRefGoogle Scholar
  17. 17.
    Razali MH, Yusoff M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion. Mater Lett, 2018, 221: 168–171CrossRefGoogle Scholar
  18. 18.
    Pan X, Zhao Y, Liu S, et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces, 2012, 4: 3944–3950CrossRefGoogle Scholar
  19. 19.
    Wang C, Zhang X, Zhang Y, et al. Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J Phys Chem C, 2011, 115: 22276–22285CrossRefGoogle Scholar
  20. 20.
    Li B, Xi B, Feng Z, et al. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv Mater, 2018, 30: 1705788CrossRefGoogle Scholar
  21. 21.
    Quan Q, Xie S, Weng B, et al. Revealing the double-edged sword role of graphene on boosted charge transfer versus active site control in TiO2 nanotube arrays@RGO/MoS2 heterostructure. Small, 2018, 14: 1704531CrossRefGoogle Scholar
  22. 22.
    Sathish Kumar M, Yamini Yasoda K, Kumaresan D, et al. TiO2-carbon quantum dots (CQD) nanohybrid: Enhanced photocatalytic activity. Mater Res Express, 2018, 5: 075502CrossRefGoogle Scholar
  23. 23.
    Yang J, Wen Z, Shen X, et al. A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer. Chem Eng J, 2018, 334: 907–921CrossRefGoogle Scholar
  24. 24.
    Chen W, Li S, Chen C, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater, 2011, 23: 5679–5683CrossRefGoogle Scholar
  25. 25.
    Long R, Casanova D, Fang WH, et al. Donor-acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-Stacking supersedes covalent bonding. J Am Chem Soc, 2017, 139: 2619–2629CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Foster CW, Banks CE, et al. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater, 2016, 28: 9391–9399CrossRefGoogle Scholar
  27. 27.
    Lee JS, You KH, Park CB. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater, 2012, 24: 1084–1088CrossRefGoogle Scholar
  28. 28.
    Yu X, Liu W, Deng X, et al. Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chem Eng J, 2018, 335: 176–184CrossRefGoogle Scholar
  29. 29.
    Yu X, Zhang W, Zhang P, et al. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens Bioelectron, 2017, 89: 72–84CrossRefGoogle Scholar
  30. 30.
    Kim H, Cho MY, Kim MH, et al. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater, 2013, 3: 1500–1506CrossRefGoogle Scholar
  31. 31.
    Deng W, Fang Q, Zhou X, et al. Hydrothermal self-assembly of graphene foams with controllable pore size. RSC Adv, 2016, 6: 20843–20849CrossRefGoogle Scholar
  32. 32.
    Li K, Liu W, Ni Y, et al. Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B, 2017, 5: 4811–4826CrossRefGoogle Scholar
  33. 33.
    Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4: 4806–4814CrossRefGoogle Scholar
  34. 34.
    Sakthivel S, Neppolian B, Shankar MV, et al. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells, 2003, 77: 65–82CrossRefGoogle Scholar
  35. 35.
    Atchudan R, Jebakumar Immanuel Edison TN, Perumal S, et al. Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation. J PhotoChem PhotoBiol A-Chem, 2017, 333: 92–104CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyuan Zhang (张晓媛)
    • 1
  • Wenfeng Wei (魏文锋)
    • 1
  • Shan Zhang (张山)
    • 1
  • Bianying Wen (温变英)
    • 2
    Email author
  • Zhiqiang Su (苏志强)
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of PlasticsBeijing Technology and Business UniversityBeijingChina

Personalised recommendations