Regioselective metal deposition on polymer-Au nanoparticle hybrid chains

  • Zhiqi Huang (黄志琦)
  • Sihang Liu (刘思航)
  • Yuejiao Zhang (张月皎)
  • Jingliang Yang (杨晶亮)
  • Jianfeng Li (李剑锋)
  • Zhihong Nie (聂志鸿)Email author
  • Jinlong Gong (巩金龙)Email author

金属在高分子-金纳米颗粒复合纳米链上的区域 选择性生长


模板法是可控合成复合纳米材料的一种重要手段. 然而, 纳米材料在模板, 尤其是复合模板上的选择性生长仍面临巨大挑战. 本文以自组装聚乙烯-金纳米颗粒一维复合纳米链为软-硬复合模板, 实现金属在该模板上可控地选择性沉积、生长. 通过选择恰当的表面活性剂来调节金属生长的热力学, 金属可以选择性地生长在金纳米颗粒的表面, 得到金属间歇包覆的复合纳米链; 也可以同时包覆在聚乙烯和金纳米颗粒的表面, 得到金属完全包覆的豌豆荚状复合纳米链. 不同的包覆方式和包覆材料选择都会导致材料光学性质的变化. 时间差分有限元模拟表明, 金包覆的豌豆荚状复合纳米链的表面金壳层和内部金纳米颗粒之间存在极强的表面等离子体耦合作用. 在表面增强拉曼实验中, 该复合纳米链表现出很强的增强信号.



This work was financially supported by the National Natural Science Foundation of China (21525626), the Program of Introducing Talents of Discipline to Universities (B06006), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Startup Fund from Fudan University.

Supplementary material

40843_2019_9420_MOESM1_ESM.pdf (817 kb)
Selective metal deposition on polymer-Au nanoparticle hybrid chains


  1. 1.
    Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chem Soc Rev, 2013, 42: 2610–2653CrossRefGoogle Scholar
  2. 2.
    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179CrossRefGoogle Scholar
  3. 3.
    Yu L, Yu XY, Lou XWD. The design and synthesis of hollow micro-/nanostructures: present and future trends. Adv Mater, 2018, 30: 1800939CrossRefGoogle Scholar
  4. 4.
    Li A, Chang X, Huang Z, et al. Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew Chem Int Ed, 2016, 55: 13734–13738CrossRefGoogle Scholar
  5. 5.
    Huang Z, Raciti D, Yu S, et al. Synthesis of platinum nanotubes and nanorings via simultaneous metal alloying and etching. J Am Chem Soc, 2016, 138: 6332–6335CrossRefGoogle Scholar
  6. 6.
    Nai J, Lou XWD. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv Mater, 2018, 37: 1706825CrossRefGoogle Scholar
  7. 7.
    Yang Y, Liu J, Fu ZW, et al. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc, 2014, 136: 8153–8156CrossRefGoogle Scholar
  8. 8.
    Xu H, Wang W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem Int Ed, 2007, 46: 1489–1492CrossRefGoogle Scholar
  9. 9.
    Pang X, Zhao L, Han W, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotech, 2013, 8: 426–431CrossRefGoogle Scholar
  10. 10.
    Sone ED, Zubarev ER, Stupp SI. Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed, 2002, 41: 1705–1709CrossRefGoogle Scholar
  11. 11.
    Zhang L, Roling LT, Wang X, et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science, 2015, 349: 412–416CrossRefGoogle Scholar
  12. 12.
    He J, Zhang P, Gong J, et al. Facile synthesis of functional Au nanopatches and nanocups. Chem Commun, 2012, 48: 7344CrossRefGoogle Scholar
  13. 13.
    Gao C, Lu Z, Yin Y. Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. Langmuir, 2011, 27: 12201–12208CrossRefGoogle Scholar
  14. 14.
    Nie Z, Fava D, Kumacheva E, et al. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat Mater, 2007, 6: 609–614CrossRefGoogle Scholar
  15. 15.
    Nie Z, Fava D, Rubinstein M, et al. “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J Am Chem Soc, 2008, 130: 3683–3689CrossRefGoogle Scholar
  16. 16.
    Liu Y, He J, Yang K, et al. Folding up of gold nanoparticle strings into plasmonic vesicles for enhanced photoacoustic imaging. Angew Chem Int Ed, 2015, 54: 15916CrossRefGoogle Scholar
  17. 17.
    Gao B, Arya G, Tao AR. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat Nanotech, 2012, 7: 433–437CrossRefGoogle Scholar
  18. 18.
    Li W, Wang K, Zhang P, et al. Self-assembly of shaped nanoparticles into free-standing 2D and 3D superlattices. Small, 2016, 12: 499–505CrossRefGoogle Scholar
  19. 19.
    He J, Liu Y, Babu T, et al. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J Am Chem Soc, 2012, 134: 11342–11345CrossRefGoogle Scholar
  20. 20.
    Stewart AF, Lee A, Ahmed A, et al. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano, 2014, 8: 5462–5467CrossRefGoogle Scholar
  21. 21.
    Huang Z, Liu Y, Zhang Q, et al. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nat Commun, 2016, 7: 12147CrossRefGoogle Scholar
  22. 22.
    Choueiri RM, Klinkova A, Thérien-Aubin H, et al. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces. J Am Chem Soc, 2013, 135: 10262–10265CrossRefGoogle Scholar
  23. 23.
    Xiang Y, Wu X, Liu D, et al. Formation of rectangularly shaped Pd/Au bimetallic nanorods: evidence for competing growth of the pd shell between the {110} and {100} side facets of Au nanorods. Nano Lett, 2006, 6: 2290–2294CrossRefGoogle Scholar
  24. 24.
    Sun H, He J, Wang J, et al. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J Am Chem Soc, 2013, 135: 9099–9110CrossRefGoogle Scholar
  25. 25.
    Graf C, Vossen DLJ, Imhof A, et al. A general method to coat colloidal particles with silica. Langmuir, 2003, 19: 6693–6700CrossRefGoogle Scholar
  26. 26.
    Wang F, Cheng S, Bao Z, et al. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew Chem Int Ed, 2013, 52: 10344–10348CrossRefGoogle Scholar
  27. 27.
    Bishnoi SW, Rozell CJ, Levin CS, et al. All-optical nanoscale pH meter. Nano Lett, 2006, 6: 1687–1692CrossRefGoogle Scholar
  28. 28.
    Aslam U, Rao VG, Chavez S, et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal, 2018, 1: 656–665CrossRefGoogle Scholar
  29. 29.
    Ding SY, Yi J, Li JF, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater, 2016, 1: 16021CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhiqi Huang (黄志琦)
    • 1
  • Sihang Liu (刘思航)
    • 1
  • Yuejiao Zhang (张月皎)
    • 3
  • Jingliang Yang (杨晶亮)
    • 3
  • Jianfeng Li (李剑锋)
    • 3
  • Zhihong Nie (聂志鸿)
    • 2
    Email author
  • Jinlong Gong (巩金龙)
    • 1
    Email author
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin University, Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina
  2. 2.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina
  3. 3.State Key Laboratory for Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEMXiamen UniversityXiamenChina

Personalised recommendations