Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors

  • Ludong Li (李禄东)
  • Zheng Lou (娄正)
  • Haoran Chen (陈浩然)
  • Ruilong Shi (史瑞龙)
  • Guozhen Shen (沈国震)Email author


Stretchable ultraviolet photodetectors with fast response have wide applications in wearable electronics and implantable biomedical devices. However, most of the conventional binary oxide nanowires based photodetectors exhibit slow response due to the presence of a large number of surface defects related to trapping centers. Herein, with interlaced SnO2-CdS nanowire films as the sensing materials, we fabricated stretchable ultraviolet photodetectors with significantly improved response speed via a multiple lithographic filtration method. Systematic investigations reveal that the interlaced-nanowire based photodetectors have lower dark current and much higher response speed (more than 100 times) compared with pure SnO2 nanowire based photo-detectors. The relevant carrier generation and transport mechanism were also discussed. In addition, due to the formation of waved wrinkles on the surface of the nanowires/PDMS layer during the prestretching cycles, the SnO2-CdS interlaced nanowire photodetectors display excellent electrical stability and stretching cyclability within 50% strain, without obvious performance degradation even after 150 stretching cycles. As a simple and effective strategy to fabricate stretchable ultraviolet photodetectors with high response speed, the interlaced-nanowire structure can also be applied to other nanowire pairs, like ZnO-CdS interlaced-nanowires. Our method provides a versatile way to fabricate fast speed ultraviolet photodetectors by using interlaced metal oxide nanowires-CdS nanowires structures, which is potential in future stretchable and wearable optoelectronic devices.


stretchable electronics interlaced-nanowire structure nanowire photodetectors SnO2-CdS 



快速响应、可拉伸紫外光电探测器在可穿戴电子和嵌入式生物医学器件中有广泛应用. 然而, 对于大多数基于传统二元氧化物纳米线的光电探测器来说, 大量表面缺陷产生的俘获中心使得探测器表现出非常慢的响应速度. 本工作利用SnO2-CdS交叠纳米线薄膜作为敏感材料, 通过多重模板抽滤法制备出了响应速率显著提高的可拉伸紫外光电探测器. 研究表明, 与纯SnO2纳米线光电探测器相比, 基于交叠纳米线的光电探测器具有更低的暗电流和更大的响应速率(>100倍). 此外, 本文还讨论了相关的载流子产生和传输的机制. 另外, 由于在预拉伸循环过程中纳米线/PDMS层的表面形成了波浪形的褶皱, SnO2-CdS交叠纳米线薄膜光电探测器在50%的拉伸应变下展现出了优异的电学稳定性和拉伸循环特性,在150次拉伸循环后仍未表现出明显的性能衰减. 作为一种简单有效的制备快速响应可拉伸紫外光电探测器的策略, 交叠纳米线结构也可以被应用到其他纳米线组合中, 比如ZnO-CdS交叠纳米线. 金属氧化物-CdS纳米线交叠结构制备能够快速响应的紫外光电探测器是一种普适的方法, 其在未来的可拉伸和可穿戴光电器件中具有巨大的应用潜力.



This work was supported by the National Natural Science Foundation of China (61625404, 61888102 and 61574132), and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSWJWC004).

Supplementary material

40843_2019_9416_MOESM1_ESM.pdf (1.7 mb)
Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors


  1. 1.
    Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater, 2010, 22: 2228–2246CrossRefGoogle Scholar
  2. 2.
    Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607CrossRefGoogle Scholar
  3. 3.
    Hammock ML, Chortos A, Tee BCK, et al. 25th Anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038CrossRefGoogle Scholar
  4. 4.
    Lou Z, Shen G. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3: 1500287CrossRefGoogle Scholar
  5. 5.
    Trung TQ, Lee NE. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater, 2017, 29: 1603167CrossRefGoogle Scholar
  6. 6.
    Le VQ, Do TH, Retamal JRD, et al. van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56: 322–329CrossRefGoogle Scholar
  7. 7.
    Ai Y, Hsu TH, Wu DC, et al. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nano-particles. J Mater Chem C, 2018, 6: 5514–5520CrossRefGoogle Scholar
  8. 8.
    Cai L, Zhang S, Miao J, et al. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano, 2016, 10: 11459–11468CrossRefGoogle Scholar
  9. 9.
    Oh JY, Rondeau-Gagné S, Chiu YC, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539: 411–415CrossRefGoogle Scholar
  10. 10.
    Kim RH, Kim DH, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9: 929–937CrossRefGoogle Scholar
  11. 11.
    Yu Z, Niu X, Liu Z, et al. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater, 2011, 23: 3989–3994CrossRefGoogle Scholar
  12. 12.
    Yu C, Masarapu C, Rong J, et al. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater, 2009, 21: 4793–4797CrossRefGoogle Scholar
  13. 13.
    Li L, Lou Z, Han W, et al. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol, 2017, 2: 1600282CrossRefGoogle Scholar
  14. 14.
    Yan C, Wang J, Wang X, et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater, 2014, 26: 943–950CrossRefGoogle Scholar
  15. 15.
    Wang J, Yan C, Kang W, et al. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale, 2014, 6: 10734–10739CrossRefGoogle Scholar
  16. 16.
    Yoo J, Jeong S, Kim S, et al. A stretchable nanowire UV-vis-NIR photodetector with high performance. Adv Mater, 2015, 27: 1712–1717CrossRefGoogle Scholar
  17. 17.
    Chiang CW, Haider G, Tan WC, et al. Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl Mater Interfaces, 2016, 8: 466–471CrossRefGoogle Scholar
  18. 18.
    Leintz R, Bond JW. Can the RUVIS reflected UV imaging system visualize fingerprint corrosion on brass cartridge casings postfiring? J Forensic Sci, 2013, 58: 772–775CrossRefGoogle Scholar
  19. 19.
    Cheong P, Chang KF, Lai YH, et al. A ZigBee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans Ind Electron, 2011, 58: 5271–5277CrossRefGoogle Scholar
  20. 20.
    Tian W, Lu H, Li L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res, 2015, 8: 382–405CrossRefGoogle Scholar
  21. 21.
    Li L, Gu L, Lou Z, et al. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11: 4067–4076CrossRefGoogle Scholar
  22. 22.
    Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors, 2009, 9: 6504–6529CrossRefGoogle Scholar
  23. 23.
    Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res, 2015, 8: 2162–2169CrossRefGoogle Scholar
  24. 24.
    Huang S, Guo CF, Zhang X, et al. Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small, 2015, 11: 5712–5718CrossRefGoogle Scholar
  25. 25.
    Kim D, Shin G, Yoon J, et al. High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology, 2013, 24: 315502CrossRefGoogle Scholar
  26. 26.
    Gutruf P, Zeller E, Walia S, et al. Stretchable and tunable microtectonic ZnO-based sensors and photonics. Small, 2015, 11: 4532–4539CrossRefGoogle Scholar
  27. 27.
    Hu L, Yan J, Liao M, et al. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small, 2011, 7: 1012–1017CrossRefGoogle Scholar
  28. 28.
    Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett, 2007, 7: 1003–1009CrossRefGoogle Scholar
  29. 29.
    Zhang D, Li C, Han S, et al. Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys A-Mater Sci Processing, 2003, 77: 163–166CrossRefGoogle Scholar
  30. 30.
    Tsai TY, Chang SJ, Weng WY, et al. A visible-blind TiO2 nanowire photodetector. J Electrochem Soc, 2012, 159: J132–J135CrossRefGoogle Scholar
  31. 31.
    Prades JD, Hernandez-Ramirez F, Jimenez-Diaz R, et al. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology, 2008, 19: 465501CrossRefGoogle Scholar
  32. 32.
    Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5: 4007CrossRefGoogle Scholar
  33. 33.
    Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett, 2015, 15: 3988–3993CrossRefGoogle Scholar
  34. 34.
    Lin CH, Chen RS, Chen TT, et al. High photocurrent gain in SnO2 nanowires. Appl Phys Lett, 2008, 93: 112115CrossRefGoogle Scholar
  35. 35.
    Wu JM, Kuo CH. Ultraviolet photodetectors made from SnO2 nanowires. Thin Solid Films, 2009, 517: 3870–3873CrossRefGoogle Scholar
  36. 36.
    Li L, Lou Z, Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl Mater Interfaces, 2015, 7: 23507–23514CrossRefGoogle Scholar
  37. 37.
    Deng K, Li L. CdS nanoscale photodetectors. Adv Mater, 2014, 26: 2619–2635CrossRefGoogle Scholar
  38. 38.
    Li H, Wang X, Xu J, et al. One-dimensional CdS nanostructures: A promising candidate for optoelectronics. Adv Mater, 2013, 25: 3017–3037CrossRefGoogle Scholar
  39. 39.
    Li L, Wu P, Fang X, et al. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv Mater, 2010, 22: 3161–3165CrossRefGoogle Scholar
  40. 40.
    Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 2016, 1: 1600136CrossRefGoogle Scholar
  41. 41.
    Zhang X, Xie Y, Zhao Q, et al. 1-D coordination polymer template approach to CdS and HgS aligned-nanowire bundles. New J Chem, 2003, 27: 827–830CrossRefGoogle Scholar
  42. 42.
    Qiu J, Li X, He W, et al. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology, 2009, 20: 155603CrossRefGoogle Scholar
  43. 43.
    Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012, 24: 5117–5122CrossRefGoogle Scholar
  44. 44.
    Cheng B, Xu J, Ouyang Z, et al. Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: Injection of electrons into/from interface states. J Mater Chem C, 2014, 2: 1808CrossRefGoogle Scholar
  45. 45.
    Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner, 2000, 85: 543–556CrossRefGoogle Scholar
  46. 46.
    Kamiya Y, Naito Y, Hirose T, et al. Sorption and partial molar volume of gases in poly(dimethyl siloxane). J Polym Sci B Polym Phys, 1990, 28: 1297–1308CrossRefGoogle Scholar
  47. 47.
    Liu Z, Huang H, Liang B, et al. Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt Express, 2012, 20: 2982CrossRefGoogle Scholar
  48. 48.
    Hu L, Kim HS, Lee JY, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 2010, 4: 2955–2963CrossRefGoogle Scholar
  49. 49.
    Poquillon D, Viguier B, Andrieu E. Experimental data about mechanical behaviour during compression tests for various matted fibres. J Mater Sci, 2005, 40: 5963–5970CrossRefGoogle Scholar
  50. 50.
    Slobodian P, Riha P, Lengalova A, et al. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks. J Mater Sci, 2011, 46: 3186–3190CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ludong Li (李禄东)
    • 1
    • 2
  • Zheng Lou (娄正)
    • 1
  • Haoran Chen (陈浩然)
    • 1
    • 2
  • Ruilong Shi (史瑞龙)
    • 1
    • 2
  • Guozhen Shen (沈国震)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations