Advertisement

Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting

  • Xuerong Zheng (郑学荣)
  • Yanhui Cao (曹晏辉)
  • Xiaopeng Han (韩晓鹏)
  • Hui Liu (刘辉)
  • Jihui Wang (王吉会)
  • Zhijia Zhang (张志佳)
  • Xianwen Wu (吴贤文)
  • Cheng Zhong (钟澄)
  • Wenbin Hu (胡文彬)
  • Yida Deng (邓意达)Email author
Articles
  • 102 Downloads

Abstract

Developing high-performance bifunctional catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3Se2@NiOOH/NF (PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of 10 mA cm-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.

Keywords

Pt-Ni3Se2@NiOOH/NF bifunctional catalyst oxygen vacancy overall water splitting 

Pt嵌入Ni3Se2@NiOOH核壳结构作为双功能催化剂提高全解水性能

摘要

制备具有高效氢析出和氧析出双功能的电催化剂对提高大 规模电解水制氢效率至关重要. 迄金为止, 无论是贵金属还是过渡 金属化合物都未能达到令人满意的效果. 本文采用原位化学反应 法制备了三维枝状Pt-Ni3Se2@NiOOH/NF(PNOF)纳米阵列. 泡沫 镍作为镍源可有效减少界面电阻的影响, 表面NiOOH含有大量氧 空位, 这些有效措施使PNOF催化剂同时具有优异的氢析出和氧析 出性能. 同时作为电解水制氢的阴极和阳极, PNOF 催化剂全解水 电位在1.52 V即可实现10 mA cm−2的电流密度, 并具有良好的稳定 性. 这项工作为开发新型全解水催化剂提供了一种有效的方法.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51804216, 51472178 and U1601216), Tianjin Natural Science Foundation (16JCYBJC17600) and Shen-zhen Science and Technology Foundation (JCYJ20170307145703486). The authors would also like to express gratitude to Ms. Jinfeng Zhang and Ms. Jing Mao for their assistance in TEM and EDS analysis, respectively.

Supplementary material

40843_2019_9413_MOESM1_ESM.pdf (2.1 mb)
The porous NiCoP Nanowalls as promising electrode with win-win high-areas and mass capacitance for supercapacitor

References

  1. 1.
    Singh S, Jain S, Ps V, et al. Hydrogen: A sustainable fuel for future of the transport sector. Renew Sustain Energy Rev, 2015, 51: 623–633CrossRefGoogle Scholar
  2. 2.
    Wang P, Jiang K, Wang G, et al. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem Int Ed, 2016, 55: 12859–12863CrossRefGoogle Scholar
  3. 3.
    Zhang X, Shao J, Huang W, et al. Three dimensional carbon substrate materials for electrolysis of water. Sci China Mater, 2018, 61: 1143–1153CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Zhang J, Chen Z, et al. One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Sci China Mater, 2018, 61: 697–706CrossRefGoogle Scholar
  5. 5.
    Wang P, Zhang X, Zhang J, et al. Precise tuning in platinumnickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun, 2017, 8: 14580CrossRefGoogle Scholar
  6. 6.
    Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015, 44: 5148–5180CrossRefGoogle Scholar
  7. 7.
    Liu X, Liu W, Ko M, et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv Funct Mater, 2015, 25: 5799–5808CrossRefGoogle Scholar
  8. 8.
    Zheng X, Zhang Y, Liu H, et al. In situ fabrication of heterostructure on nickel foam with tuned composition for enhancing water-splitting performance. Small, 2018, 14: 1803666CrossRefGoogle Scholar
  9. 9.
    Zheng X, Han X, Liu H, et al. Controllable synthesis of NixSe (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc-air batteries and water splitting. ACS Appl Mater Interfaces, 2018, 10: 13675–13684CrossRefGoogle Scholar
  10. 10.
    Li Y, Liu B, Wang H, et al. Co3O4 nanosheet-built hollow dodecahedrons via a two-step self-templated method and their multifunctional applications. Sci China Mater, 2018, 61: 1575–1586CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Liu G, Cui X, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv Mater, 2018, 30: 1801741CrossRefGoogle Scholar
  12. 12.
    Deng J, Deng D, Bao X. Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective. Adv Mater, 2017, 29: 1606967CrossRefGoogle Scholar
  13. 13.
    Ling T, Yan DY, Wang H, et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat Commun, 2017, 8: 1509CrossRefGoogle Scholar
  14. 14.
    Zhang FS, Wang JW, Luo J, et al. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem Sci, 2018, 9: 1375–1384CrossRefGoogle Scholar
  15. 15.
    Meng C, Ling T, Ma TY, et al. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv Mater, 2017, 29: 1604607CrossRefGoogle Scholar
  16. 16.
    Zhang J, Chen J, Luo Y, et al. Controllable synthesis of two-dimensional tungsten nitride nanosheets as electrocatalysts for oxygen reduction reaction. Sci China Mater, 2018, 61: 1567–1574CrossRefGoogle Scholar
  17. 17.
    An L, Li Y, Luo M, et al. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv Funct Mater, 2017, 27: 1703779CrossRefGoogle Scholar
  18. 18.
    Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334: 1256–1260CrossRefGoogle Scholar
  19. 19.
    Yin H, Zhao S, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430CrossRefGoogle Scholar
  20. 20.
    Dou J, Tang Y, Nie L, et al. Complete oxidation of methane on Co3O4/CeO2 nanocomposite: A synergic effect. Catal Today, 2018, 311: 48–55CrossRefGoogle Scholar
  21. 21.
    Vayssilov GN, Lykhach Y, Migani A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater, 2011, 10: 310–315CrossRefGoogle Scholar
  22. 22.
    Ho VTT, Pan CJ, Rick J, et al. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J Am Chem Soc, 2011, 133: 11716–11724CrossRefGoogle Scholar
  23. 23.
    Han X, Cheng F, Zhang T, et al. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv Mater, 2014, 26: 2047–2051CrossRefGoogle Scholar
  24. 24.
    Yin J, Li Y, Lv F, et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv Mater, 2017, 29: 1704681CrossRefGoogle Scholar
  25. 25.
    Dutta S, Indra A, Feng Y, et al. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Appl Mater Interfaces, 2017, 9: 33766–33774CrossRefGoogle Scholar
  26. 26.
    Li X, Han GQ, Liu YR, et al. NiSe@NiOOH core-shell hyacinthlike nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl Mater Interfaces, 2016, 8: 20057–20066CrossRefGoogle Scholar
  27. 27.
    Han X, He G, He Y, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv Energy Mater, 2018, 8: 1702222CrossRefGoogle Scholar
  28. 28.
    Swesi AT, Masud J, Nath M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci, 2016, 9: 1771–1782CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Zhang C, Liang J, et al. Orthorhombic a-NiOOH nanosheet arrays: Phase conversion and efficient bifunctional electrocatalysts for full water splitting. ACS Sustain Chem Eng, 2017, 5: 3808–3818CrossRefGoogle Scholar
  30. 30.
    Trotochaud L, Young SL, Ranney JK, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J Am Chem Soc, 2014, 136: 6744–6753CrossRefGoogle Scholar
  31. 31.
    Sun H, Xu X, Yan Z, et al. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem Mater, 2017, 29: 8539–8547CrossRefGoogle Scholar
  32. 32.
    Shi C, Liu J, Li W, et al. Hydrogen plasma reduction induced oxygen vacancies in cubic In2O3 particles with enhanced photocatalytic performance. Ceramics Int, 2018, 44: 22235–22240CrossRefGoogle Scholar
  33. 33.
    Nakamura I, Negishi N, Kutsuna S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A-Chem, 2000, 161: 205–212CrossRefGoogle Scholar
  34. 34.
    Wang D, Shen H, Guo L, et al. Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon. Appl Surf Sci, 2018, 436: 536–547CrossRefGoogle Scholar
  35. 35.
    Wang Y, Cao H, Chen L, et al. Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Appl Catal B-Environ, 2018, 229: 71–80CrossRefGoogle Scholar
  36. 36.
    Bao J, Zhang X, Fan B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed, 2015, 54: 7399–7404CrossRefGoogle Scholar
  37. 37.
    Lei F, Sun Y, Liu K, et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc, 2014, 136: 6826–6829CrossRefGoogle Scholar
  38. 38.
    Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem, 2017, 9: 457–465CrossRefGoogle Scholar
  39. 39.
    Lu X, Wang G, Zhai T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett, 2012, 12: 5376–5381CrossRefGoogle Scholar
  40. 40.
    Chen GF, Ma TY, Liu ZQ, et al. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv Funct Mater, 2016, 26: 3314–3323CrossRefGoogle Scholar
  41. 41.
    Han X, Wu X, Deng Y, et al. Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv Energy Mater, 2018, 8: 1800935CrossRefGoogle Scholar
  42. 42.
    Yang Y, Zhang K, Lin H, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal, 2017, 7: 2357–2366CrossRefGoogle Scholar
  43. 43.
    Xu K, Ding H, Jia K, et al. Solution-liquid-solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew Chem Int Ed, 2016, 55: 1710–1713CrossRefGoogle Scholar
  44. 44.
    Xing Z, Han C, Wang D, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7: 7131–7135CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuerong Zheng (郑学荣)
    • 1
  • Yanhui Cao (曹晏辉)
    • 1
  • Xiaopeng Han (韩晓鹏)
    • 1
  • Hui Liu (刘辉)
    • 2
  • Jihui Wang (王吉会)
    • 1
  • Zhijia Zhang (张志佳)
    • 3
  • Xianwen Wu (吴贤文)
    • 4
  • Cheng Zhong (钟澄)
    • 1
  • Wenbin Hu (胡文彬)
    • 1
  • Yida Deng (邓意达)
    • 1
    Email author
  1. 1.School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinChina
  2. 2.School of Materials Science and Engineering, Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei ProvinceHebei University of TechnologyTianjinChina
  3. 3.School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina
  4. 4.School of Chemistry and Chemical EngineeringJishou UniversityJishouChina

Personalised recommendations