Iron-doping induced multiferroic in two-dimensional In2Se3

  • Huai Yang (杨淮)
  • Longfei Pan (潘龙飞)
  • Mengqi Xiao (肖梦琪)
  • Jingzhi Fang (房景治)
  • Yu Cui (崔宇)
  • Zhongming Wei (魏钟鸣)Email author


Multiferroic materials exhibit tremendous potentials in novel magnetoelectric devices such as high-density non-volatile storage. Herein, we report the coexistence of ferroelectricity and ferromagnetism in two-dimensional Fe-doped In2Se3 (Fe0.16In1.84Se3, FIS). The Fe atoms were doped at the In atom sites and the Fe content is ∼3.22% according to the experiments. Our first-principles calculation based on the density-functional theory predicts a magnetic moment of 5 µB per Fe atom when Fe substitutes In sites in In2Se3. The theoretical prediction was further confirmed experimentally by magnetic measurement. The results indicate that pure In2Se3 is diamagnetic, whereas FIS exhibits ferromagnetic behavior with a parallel anisotropy at 2 K and a Curie temperature of ∼8 K. Furthermore, the sample maintains stable room-temperature ferroelectricity in piezoresponse force microscopy (PFM) measurement after the introduction of Fe atom into the ferroelectric In2Se3 nanoflakes. The findings indicate that the layered Fe0.16In1.84Se3 materials have potential in future nanoelectronic, magnetic, and optoelectronic applications.


2D materials multiferroic iron-doping In2Se3 



多铁材料具有巨大的潜力, 可应用于新型磁电设备, 如高密 度非易失性存储等. 在本工作中, 我们报道了一种具有铁电性和铁 磁性共存特性的新型二维铁掺杂硒化铟. 实验结果显示, Fe原子在 In原子位点进行了替位掺杂, Fe的含量约为3.22%, 其化学式为 Fe0.16In1.84Se3. 基于密度泛函理论第一性原理计算预测, 当Fe替代 硒化铟中In的位置时, 每个Fe原子的磁矩为5 µB. 我们通过量子干 涉超导测试进一步证实了理论预测. 磁性测量表明纯硒化铟是抗 磁性的, 而Fe0.16In1.84Se3表现出铁磁行为, 在2 K时具有平行各向异 性, 居里温度约为8 K. 此外, 压电力响应测试表明Fe原子掺杂进入 铁电硒化铟纳米薄片后仍保持稳定的室温铁电性. 研究结果表明, 层状多铁材料Fe0.16In1.84Se3在未来的纳米电子、磁性和光电器件中 具有潜在的应用前景.



This work was financially supported by the National Key Research and Development Program of China (2017YFA0207500), the National Natural Science Foundation of China (61622406, 61571415 and 51502283), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), and Beijing Academy of Quantum Information Sciences (Y18G04).

Author contributions

Yang H and Wei Z conceived the study. Yang H conducted most experiments and wrote the manuscript with support from Wei Z. Pan L performed the DFT calculations and wrote the theory part. Xiao M, Fang J and Cui Y provided experimental assistance and theoretical discussion. All authors contributed to the general discussion.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765CrossRefGoogle Scholar
  2. 2.
    Seixas L, Rodin AS, Carvalho A, et al. Multiferroic two-dimensional materials. Phys Rev Lett, 2016, 116: 206803CrossRefGoogle Scholar
  3. 3.
    Bibes M. Nanoferronics is a winning combination. Nat Mater, 2012, 11: 354–357CrossRefGoogle Scholar
  4. 4.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150CrossRefGoogle Scholar
  5. 5.
    Sangwan VK, Jariwala D, Kim IS, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10: 403–406CrossRefGoogle Scholar
  6. 6.
    Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 1719–1722CrossRefGoogle Scholar
  7. 7.
    Makhdoom AR, Akhtar MJ, Khan RTA, et al. Association of microstructure and electric heterogeneity in BiFeO3. Mater Chem Phys, 2013, 143: 256–262CrossRefGoogle Scholar
  8. 8.
    Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278CrossRefGoogle Scholar
  9. 9.
    Zhou Y, Wu D, Zhu Y, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513CrossRefGoogle Scholar
  10. 10.
    Cui C, Hu WJ, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258CrossRefGoogle Scholar
  11. 11.
    Lai Y, Song Z, Wan Y, et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale, 2019, 11: 5163–5170CrossRefGoogle Scholar
  12. 12.
    Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357CrossRefGoogle Scholar
  13. 13.
    Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956CrossRefGoogle Scholar
  14. 14.
    Xue F, He X, Retamal JRD, et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv Mater, 2019, 31: 1901300CrossRefGoogle Scholar
  15. 15.
    Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12: 4976–4983CrossRefGoogle Scholar
  16. 16.
    Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363: eaav4450CrossRefGoogle Scholar
  17. 17.
    Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269CrossRefGoogle Scholar
  18. 18.
    Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273CrossRefGoogle Scholar
  19. 19.
    Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99CrossRefGoogle Scholar
  20. 20.
    Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11: 2584–2589CrossRefGoogle Scholar
  21. 21.
    Li B, Xing T, Zhong M, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8: 1958CrossRefGoogle Scholar
  22. 22.
    Li B, Huang L, Zhong M, et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano, 2015, 9: 1257–1262CrossRefGoogle Scholar
  23. 23.
    Venkata Ramana E, Yang SM, Jung R, et al. Ferroelectric and magnetic properties of Fe-doped BaTiO3 thin films grown by the pulsed laser deposition. J Appl Phys, 2013, 113: 187219CrossRefGoogle Scholar
  24. 24.
    He J, Lu X, Zhu W, et al. Induction and control of room-temperature ferromagnetism in dilute Fe-doped SrTiO3 ceramics. Appl Phys Lett, 2015, 107: 012409CrossRefGoogle Scholar
  25. 25.
    Yao D, Zhou X, Ge S. Raman scattering and room temperature ferromagnetism in Co-doped SrTiO3 particles. Appl Surf Sci, 2011, 257: 9233–9236CrossRefGoogle Scholar
  26. 26.
    Hu T, Kan E. Progress and prospects in low-dimensional multiferroic materials. WIREs Comput Mol Sci, 2019, 9: e1409CrossRefGoogle Scholar
  27. 27.
    Ho CH, Lin MH, Pan CC. Optical-memory switching and oxygen detection based on the CVT grown γ- and α-phase In2Se3. Sens Actuat B-Chem, 2015, 209: 811–819CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Yang W. Comment on “Generalized gradient approximation made simple”. Phys Rev Lett, 1998, 80: 890CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  32. 32.
    Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215CrossRefGoogle Scholar
  33. 33.
    Paier J, Marsman M, Hummer K, et al. Screened hybrid density functionals applied to solids. J Chem Phys, 2006, 124: 154709CrossRefGoogle Scholar
  34. 34.
    Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B, 1998, 57: 1505–1509CrossRefGoogle Scholar
  35. 35.
    Kulik HJ, Cococcioni M, Scherlis DA, et al. Density functional theory in transition-metal chemistry: a self-consistent Hubbard-U Approach. Phys Rev Lett, 2006, 97: 103001CrossRefGoogle Scholar
  36. 36.
    Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502CrossRefGoogle Scholar
  37. 37.
    Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem, 2004, 25: 1463–1473CrossRefGoogle Scholar
  38. 38.
    Zhou J, Zeng Q, Lv D, et al. Controlled synthesis of high-quality monolayered α-In2Se3via physical vapor deposition. Nano Lett, 2015, 15: 6400–6405CrossRefGoogle Scholar
  39. 39.
    Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120: 227601CrossRefGoogle Scholar
  40. 40.
    Grosvenor AP, Kobe BA, Biesinger MC, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal, 2004, 36: 1564–1574CrossRefGoogle Scholar
  41. 41.
    Qiu S, Li W, Liu Y, et al. Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3 ceramics. Trans Nonferrous Met Soc China, 2010, 20: 1911–1915CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huai Yang (杨淮)
    • 1
  • Longfei Pan (潘龙飞)
    • 1
  • Mengqi Xiao (肖梦琪)
    • 1
  • Jingzhi Fang (房景治)
    • 1
  • Yu Cui (崔宇)
    • 1
  • Zhongming Wei (魏钟鸣)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Beijing Academy of Quantum Information SciencesBeijingChina

Personalised recommendations