Advertisement

Science China Materials

, Volume 62, Issue 12, pp 1798–1806 | Cite as

Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides

  • Junben Huang (黄君本)
  • Siru Guo (郭思茹)
  • Zhizhong Zhang (张志忠)
  • Zhihua Yang (杨志华)Email author
  • Shilie Pan (潘世烈)Email author
Articles
  • 89 Downloads

Abstract

Exploration of new infrared (IR) nonlinear optical (NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation (SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d0 transition metal fluorooxo-functional groups for designing mid-IR NLO materials. By studying a series of d0 transition metal oxyfluorides (TMOFs), the influences of fluorooxo-functional groups with different d0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d0 TMOFs exhibit wide band gaps (all the band gaps > 3.0 eV), large birefringence Δn (> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.

Keywords

infrared nonlinear optical materials second harmonic generation d0 transition metal oxyfluorides fluorooxo-functional groups 

基于氟化功能基团的d0过渡金属氟氧化物中红外非线性光学材料设计研究

摘要

红外非线性光学晶体在光电器件、资源勘探和长距离激光通讯等领域具有极其重要的应用, 因此探索性能优异的新型红外非线性光学晶体材料已成为该领域的一个重要方向. 当前, 该领域面临的主要挑战之一是如何实现宽带隙和大倍频效应之间的平衡. 本文中, 我们提出一种设计策略, 即引入d0过渡金属的氟化功能基团作为活性基元, 设计中红外非线性光学晶体材料. 通过对含d0过 渡金属氟氧化物的系统研究, 我们探索了这类氟化功能基团对带隙和倍频响应的影响机制. 研究发现d0过渡金属的氟化功能基团有利于产生较大的带隙. 基于第一性原理计算, 我们分析了碱金属/碱土金属d0过渡金属氟氧化物的光学性能, 它们具有宽的带隙(> 3.0 eV)和大的双折射率(>0.07),其中2个分别含W和Mo的氟氧化物也呈现了较强的倍频效应. 此外, 我们对比分析了其他氟化功能基团, 发现在基本构筑基元中引入氟离子有利于光学性能的提升. 由此说明, 这种具有优异氟化功能基团的d0过渡金属氟氧化物, 可以作为探索新型中红外非线性光学的潜在体系.

Notes

Acknowledgements

This work is supported by Tianshan Innovation Team Program (2018D14001), the National Natural Science Foundation of China (51922014 and 11774414), Shanghai Cooperation Organization Science and Technology Partnership Program (2017E01013), Xinjiang Program of Introducing High-Level Talents, Fujian Institute of Innovation, Chinese Academy of Sciences (FJCXY18010202), and the Western Light Foundation of CAS (2017-XBQNXZ-B-006 and 2016-QNXZ-B-9).

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

40843_2019_1201_MOESM1_ESM.pdf (34.4 mb)
Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides

References

  1. 1.
    Chen C, Sasaki T, Li R, et al. Nonlinear Optical Borate Crystals. Weinheim: Weily-VCH, 2012Google Scholar
  2. 2.
    Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769Google Scholar
  3. 3.
    Hu CL, Mao JG. Recent advances on second-order NLO materials based on metal iodates. Coord Chem Rev, 2015, 288: 1–17Google Scholar
  4. 4.
    Wang Y, Pan S. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coord Chem Rev, 2016, 323: 15–35Google Scholar
  5. 5.
    Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258Google Scholar
  6. 6.
    Pan Y, Guo SP, Liu BW, et al. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev, 2018, 374: 464–496Google Scholar
  7. 7.
    Zhou GJ, Guo S, Zhao J, et al. Unraveling the mechanochemical synthesis and luminescence in MnII-based two-dimensional hybrid perovskite (C4H9NH3)2PbCl4. Sci China Mater, 2019, 62: 1013–1022Google Scholar
  8. 8.
    Zou GH, Lin C, Jo H, et al. Pb2BO3Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082Google Scholar
  9. 9.
    Zhang XY, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M = Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62: 1023–1032Google Scholar
  10. 10.
    Zheng Z, Gan L, Zhai T. Electrospun nanowire arrays for electronics and optoelectronics. Sci China Mater, 2016, 59: 200–216Google Scholar
  11. 11.
    Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955Google Scholar
  12. 12.
    Chen C, Wu B, Jiang A, et al. A new-type ultraviolet SHG crystal β-BaB2O4. Sci Sin B (Engl Ed), 1985, 28: 235–243Google Scholar
  13. 13.
    Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621Google Scholar
  14. 14.
    Smith WL. KDP and ADP transmission in the vacuum ultraviolet. Appl Opt, 1977, 16: 1798Google Scholar
  15. 15.
    Kato K. Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm. IEEE J Quantum Electron, 1991, 27: 1137–1140Google Scholar
  16. 16.
    Boyd GD, Kasper H, McFee J, et al. Linear and nonlinear optical properties of some ternary selenides. IEEE J Quantum Electron, 1972, 8: 900–908Google Scholar
  17. 17.
    Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304Google Scholar
  18. 18.
    Hu C, Zhang B, Lei BH, et al. Advantageous units in antimony sulfides: Exploration and design of infrared nonlinear optical materials. ACS Appl Mater Interfaces, 2018, 10: 26413–26421Google Scholar
  19. 19.
    Chang HY, Kim SH, Halasyamani PS, et al. Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. J Am Chem Soc, 2009, 131: 2426–2427Google Scholar
  20. 20.
    Jo H, Lee S, Choi KY, et al. Li6M(SeO3)4 (M = Co, Ni, and Cd) and Li2Zn(SeO3)2: Selenites with late transition-metal cations. Inorg Chem, 2018, 57: 3465–3473Google Scholar
  21. 21.
    Liang F, Kang L, Lin Z, et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: Structure-property relationship. Cryst Growth Des, 2017, 17: 2254–2289Google Scholar
  22. 22.
    Mori Y, Kuroda I, Nakajima S, et al. New nonlinear optical crystal: Cesium lithium borate. Appl Phys Lett, 1995, 67: 1818–1820Google Scholar
  23. 23.
    Inaguma Y, Yoshida M, Katsumata T. A polar oxide ZnSnO3 with a LiNbO3-type structure. J Am Chem Soc, 2008, 130: 6704–6705Google Scholar
  24. 24.
    Jiang X, Zhao S, Lin Z, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. J Mater Chem C, 2014, 2: 530–537Google Scholar
  25. 25.
    Liang ML, Hu CL, Kong F, et al. BiFSeO3: An excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436Google Scholar
  26. 26.
    Mao FF, Hu CL, Chen J, et al. A series of mixed-metal germanium iodates as second-order nonlinear optical materials. Chem Mater, 2018, 30: 2443–2452Google Scholar
  27. 27.
    Zhang B, Shi G, Yang Z, et al. Fluorooxoborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew Chem Int Ed, 2017, 56: 3916–3919Google Scholar
  28. 28.
    Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648Google Scholar
  29. 29.
    Li H, Li G, Wu K, et al. BaB2S4: An efficient and air-stable thioborate as infrared nonlinear optical material with high laser damage threshold. Chem Mater, 2018, 30: 7428–7432Google Scholar
  30. 30.
    Chung I, Kanatzidis MG. Metal chalcogenides: A rich source of nonlinear optical materials. Chem Mater, 2014, 26: 849–869Google Scholar
  31. 31.
    Liang F, Kang L, Lin Z, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord Chem Rev, 2017, 333: 57–70Google Scholar
  32. 32.
    Isaenko LI, Yelisseyev AP. Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semicond Sci Technol, 2016, 31: 123001–123025Google Scholar
  33. 33.
    Wu K, Pan S. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances. Coord Chem Rev, 2018, 377: 191–208Google Scholar
  34. 34.
    Kang L, Ramo DM, Lin Z, et al. First principles selection and design of mid-IR nonlinear optical halide crystals. J Mater Chem C, 2013, 1: 7363–7370Google Scholar
  35. 35.
    Guo SP, Chi Y, Guo GC. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord Chem Rev, 2017, 335: 44–57Google Scholar
  36. 36.
    Gong P, Liang F, Kang L, et al. Recent advances and future perspectives on infrared nonlinear optical metal halides. Coord Chem Rev, 2019, 380: 83–102Google Scholar
  37. 37.
    Li YY, Wang WJ, Wang H, et al. Mixed-anion inorganic compounds: A favorable candidate for infrared nonlinear optical materials. Cryst Growth Des, 2019, 19: 4172–4192Google Scholar
  38. 38.
    Zhang H, Zhang M, Pan S, et al. Pb17O8Cl18: A promising IR nonlinear optical material with large laser damage threshold synthesized in an open system. J Am Chem Soc, 2015, 137: 8360–8363Google Scholar
  39. 39.
    Yang Z, Hu C, Mutailipu M, et al. Oxyhalides: Prospecting ore for optical functional materials with large laser damage thresholds. J Mater Chem C, 2018, 6: 2435–2442Google Scholar
  40. 40.
    Zhu T, Chen X, Qin J. Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China. Front Chem China, 2011, 6: 1–8Google Scholar
  41. 41.
    Wu BL, Hu C, Tang R, et al. Fluoroborophosphates: A family of potential deep ultraviolet NLO materials. Inorg Chem Front, 2019, 6: 723–730Google Scholar
  42. 42.
    Han G, Lei BH, Yang Z, et al. A fluorooxosilicophosphate with an unprecedented SiO2F4 species. Angew Chem Int Ed, 2018, 57: 9828–9832Google Scholar
  43. 43.
    Zhang BB, Tikhonov E, Xie C, et al. Prediction of fluorooxoborates with colossal second harmonic generation (SHG) coefficients and extremely wide band gaps: towards modulating properties by tuning the BO3/BO3F ratio in layers. Angew Chem Int Ed, 2019, 58: 11726–11730Google Scholar
  44. 44.
    Wang XF, Wang Y, Zhang B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew Chem Int Ed, 2017, 56: 14119–14123Google Scholar
  45. 45.
    Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099Google Scholar
  46. 46.
    Luo M, Liang F, Song Y, et al. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M = Pb, Sn), containing flexible two-dimensional [B6O12F6] single layers with widely divergent second harmonic generation effects. J Am Chem Soc, 2018, 140: 6814–6817Google Scholar
  47. 47.
    Jantz SG, Dialer M, Bayarjargal L, et al. Sn[B2O3F2]-the first tin fluorooxoborate as possible NLO material. Adv Opt Mater, 2018, 6: 1800497–1800505Google Scholar
  48. 48.
    Halasyamani PS. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater, 2004, 16: 3586–3592Google Scholar
  49. 49.
    Ok KM, Halasyamani PS, Casanova D, et al. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem Mater, 2006, 18: 3176–3183Google Scholar
  50. 50.
    Gautier R, Gautier R, Chang KB, et al. On the origin of the differences in structure directing properties of polar metal oxyfluoride [MOxF6−x]2− (x = 1, 2) building units. Inorg Chem, 2015, 54: 1712–1719Google Scholar
  51. 51.
    Marvel MR, Lesage J, Baek J, et al. Cation-anion interactions and polar structures in the solid state. J Am Chem Soc, 2007, 129: 13963–13969Google Scholar
  52. 52.
    Welk ME, Norquist AJ, Arnold FP, et al. Out-of-center distortions in d0 transition metal oxide fluoride anions. Inorg Chem, 2002, 41: 5119–5125Google Scholar
  53. 53.
    Marvel MR, Pinlac RAF, Lesage J, et al. Chemical hardness and the adaptive coordination behavior of the d0 transition metal oxide fluoride anions. Z Anorg Allg Chem, 2009, 635: 869–877Google Scholar
  54. 54.
    Mishra AK, Marvel MR, Poeppelmeier KR, et al. Competing cation anion interactions and noncentrosymmetry in metal oxide-fluorides: A first-principles theoretical study. Cryst Growth Des, 2014, 14: 131–139Google Scholar
  55. 55.
    Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc, 1929, 51: 1010–1026Google Scholar
  56. 56.
    Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z für Kristallographie-Crystline Mater, 2005, 220: 567–570Google Scholar
  57. 57.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868Google Scholar
  58. 58.
    Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180Google Scholar
  59. 59.
    Aversa C, Sipe JE. Nonlinear optical susceptibilities of semi-conductors: Results with a length-gauge analysis. Phys Rev B, 1995, 52: 14636–14645Google Scholar
  60. 60.
    Rashkeev SN, Lambrecht WRL, Segall B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys Rev B, 1998, 57: 3905–3919Google Scholar
  61. 61.
    Zhang B, Lee MH, Yang Z, et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl Phys Lett, 2015, 106: 031906Google Scholar
  62. 62.
    Lin J, Lee MH, Liu ZP, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Phys Rev B, 1999, 60: 13380–13389Google Scholar
  63. 63.
    Stomberg R. ChemInform abstract: the crystal structure of a-sodium hexafluorooxoniobate(V), α-Na3(NBF6O). Chemischer Infsdienst, 1984, 15Google Scholar
  64. 64.
    Gerasimenko AV, Bukvetskii BV, Chernyshov BN, et al. ChemInform abstract: Crystal structure of K3TiF3(O2)2. ChemInform, 1990, 21Google Scholar
  65. 65.
    Vasiliev AD, Laptash NM. Polymorphism of KNaNbOF5 crystals. J Struct Chem, 2012, 53: 902–906Google Scholar
  66. 66.
    Yu ZQ, Wang JQ, Huang YX, et al. Polymorphism of NaVO2F2: a P21/c superstructure with pseudosymmetry of P21/m in the subcell. Acta Crystlogr C Struct Chem, 2015, 71: 440–447Google Scholar
  67. 67.
    Sheng J, Tang K, Cheng W, et al. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K2TiOF4, K3TiOF5, K7Ti4O4F7 and K2TiF6. J Hazard Mater, 2009, 171: 279–287Google Scholar
  68. 68.
    Crosnier MP, Fourquet JL. Synthesis and crystal structure of a new acentric oxyfluoride: Ba2TiOF6. J Solid State Chem, 1992, 99: 355–363Google Scholar
  69. 69.
    Wingefeld G, Hoppe R. Zur Konstitution von Ba2WO3F4 und Ba2MoO3F4. Z Anorg Allg Chem, 1984, 518: 149–160Google Scholar
  70. 70.
    Torardi CC, Brixner LH. Structure and luminescence of Ba2WO3F4. Mater Res Bull, 1985, 20: 137–145Google Scholar
  71. 71.
    Bian Q, Yang Z, Dong L, et al. First principle assisted prediction of the birefringence values of functional inorganic borate materials. J Phys Chem C, 2014, 118: 25651–25657Google Scholar
  72. 72.
    Jiang X, Luo S, Kang L, et al. First-principles evaluation of the alkali and/or alkaline earth beryllium borates in deep ultraviolet nonlinear optical applications. ACS Photonics, 2015, 2: 1183–1191Google Scholar
  73. 73.
    Yu H, Zhang W, Halasyamani PS. Large birefringent materials, Na6Te4W6O29 and Na2TeW2O9: Synthesis, structure, crystal growth, and characterization. Cryst Growth Des, 2016, 16: 1081–1087Google Scholar
  74. 74.
    Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian09, RevisionD.01, Gaussian, Inc, Wallingford CT, 2009Google Scholar
  75. 75.
    Charles N, Saballos RJ, Rondinelli JM. Structural diversity from anion order in heteroanionic materials. Chem Mater, 2018, 30: 3528–3537Google Scholar
  76. 76.
    Krukau AV, Vydrov OA, Izmaylov AF, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125: 224106–224111Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Junben Huang (黄君本)
    • 1
    • 2
  • Siru Guo (郭思茹)
    • 1
    • 2
  • Zhizhong Zhang (张志忠)
    • 1
    • 2
  • Zhihua Yang (杨志华)
    • 1
    Email author
  • Shilie Pan (潘世烈)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & ChemistryCAS; Xinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqiChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations