Science China Materials

, Volume 62, Issue 12, pp 1783–1787 | Cite as

A solid-state chemist’s eye for the development of materials science in China

  • Yadong LiEmail author


  1. 1.
    Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769CrossRefGoogle Scholar
  2. 2.
    Marvel MR, Lesage J, Baek J, et al. Cation-anion interactions and polar structures in the solid state. J Am Chem Soc, 2007, 129: 13963–13969CrossRefGoogle Scholar
  3. 3.
    Chen MC, Wu LM, Lin H, et al. Disconnection enhances the second harmonic generation response: synthesis and characterization of Ba23Ga8Sb2S38. J Am Chem Soc, 2012, 134: 6058–6060CrossRefGoogle Scholar
  4. 4.
    Rondinelli JM, May SJ, Freeland JW. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull, 2012, 37: 261–270CrossRefGoogle Scholar
  5. 5.
    Gautier R, Klingsporn JM, Van Duyne RP, et al. Optical activity from racemates. Nat Mater, 2016, 15: 591–592CrossRefGoogle Scholar
  6. 6.
    Li L, Wang Y, Lei BH, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J Am Chem Soc, 2016, 138: 9101–9104CrossRefGoogle Scholar
  7. 7.
    Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648CrossRefGoogle Scholar
  8. 8.
    Poeppelmeier KR, Leonowicz ME, Longo JM. CaMnO2.5 and Ca2MnO3.5: New oxygen-defect perovskite-type oxides. J Solid State Chem, 1982, 44: 89–98CrossRefGoogle Scholar
  9. 9.
    Poeppelmeier KR, Leonowicz ME, Scanlon JC, et al. Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods. J Solid State Chem, 1982, 45: 71–79CrossRefGoogle Scholar
  10. 10.
    Poeppelmeier KR, Longo JM. Oxygen Deficient Manganese Perovskites. US Patent 4388294, 1983Google Scholar
  11. 11.
    Anderson M, Greenwood K, Taylor G, et al. B-cation arrangements in double perovskites. Prog Solid State Chem, 1993, 22: 197–233CrossRefGoogle Scholar
  12. 12.
    Vander Griend DA, Malo S, Wang TK, et al. Discovering new oxides. J Am Chem Soc, 2000, 122: 7308–7311CrossRefGoogle Scholar
  13. 13.
    Erdman N, Poeppelmeier KR, Asta M, et al. The structure and chemistry of the TiO2-rich surface of SrTiO3 (001). Nature, 2002, 419: 55–58CrossRefGoogle Scholar
  14. 14.
    Enterkin JA, Subramanian AK, Russell BC, et al. A homologous series of structures on the surface of SrTiO3(110). Nat Mater, 2010, 9: 245–248CrossRefGoogle Scholar
  15. 15.
    Lin Y, Wu Z, Wen J, et al. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett, 2014, 14: 191–196CrossRefGoogle Scholar
  16. 16.
    Hoel CA, Mason TO, Gaillard JF, et al. Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem Mater, 2010, 22: 3569–3579CrossRefGoogle Scholar
  17. 17.
    Palmer GB, Poeppelmeier KR, Mason TO. Conductivity and transparency of ZnO/SnO2-cosubstituted In2O3. Chem Mater, 1997, 9: 3121–3126CrossRefGoogle Scholar
  18. 18.
    Edwards DD, Mason TO, Goutenoire F, et al. A new transparent conducting oxide in the Ga2O3-In2O3-SnO2 system. Appl Phys Lett, 1997, 70: 1706–1708CrossRefGoogle Scholar
  19. 19.
    Freeman AJ, Poeppelmeier KR, Mason TO, et al. Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull, 2000, 25: 45–51CrossRefGoogle Scholar
  20. 20.
    Xia Z, Liu G, Wen J, et al. Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution. J Am Chem Soc, 2016, 138: 1158–1161CrossRefGoogle Scholar
  21. 21.
    Holland M, Charles N, Rondinelli JM, et al. Reconstructive transitions from rotations of rigid heteroanionic polyhedra. J Am Chem Soc, 2016, 138: 11882–11889CrossRefGoogle Scholar
  22. 22.
    Xia Z, Ma C, Molokeev MS, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7: Eu2+ phosphor. J Am Chem Soc, 2015, 137: 12494–12497CrossRefGoogle Scholar
  23. 23.
    Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230CrossRefGoogle Scholar
  24. 24.
    Qiao J, Ning L, Molokeev MS, et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7:Eu phosphor. Angew Chem Int Ed, 2019, 58: 11521–11526CrossRefGoogle Scholar
  25. 25.
    Gautier R, Zhang X, Hu L, et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat Chem, 2015, 7: 308–316CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations